Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 57 results
Snippet view Table view Download 57 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_002172

    This resource has 100+ mentions.

http://www.genoscope.cns.fr/spip/spip.php?lang=en

French national sequencing center with the following resources: * Sequencing ** Genoscope Projects * Environmental genomics ** Microbial diversity in wastewater ** Metabolic genomics * Bioinformatics ** Atelier for comparative genomics ** Computational Systems Biology ** Servers resources *** GGB for Generic Genome Browser: graphic interface for various databases (sequence, annotation, syntenies...) for a given organism. *** MaGe for Magnifying Microbial Genomes: annotation system for microbial genomes.

Proper citation: Genoscope (RRID:SCR_002172) Copy   


http://www.scienceexchange.com/facilities/vib-compound-screening-facility

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 15,2024. Compound screening facility that has several drug-like compound collections available that amount to a total of about 74,000 compounds and a human siRNA library that targets almost 8,000 genes. State-of-the-art liquid handling systems and detection technologies are available for screening in-house or custom collections in 96- or 384-well plate format. The platform is compatible with biochemical assays, cell-based assays in a broad range of cellular systems and assays in the model plant Arabidopsis thaliana. Its core activities consist of managing the VIB screening collections, assisting researchers in assay development / automation and performing high-throughput screenings. After hit clustering and selection, the VIB-CSF team can contribute in structure-activity analysis, IC50 measurements, cytotoxicity analysis, secondary screening for hit validation and counter screening for specificity analysis.

Proper citation: VIB Compound Screening Facility (RRID:SCR_012256) Copy   


http://rostlab.org/services/nlsdb/

A database of nuclear localization signals (NLSs) and of nuclear proteins targeted to the nucleus by NLS motifs. NLSs are short stretches of residues mediating transport of nuclear proteins into the nucleus. The database contains 114 experimentally determined NLSs that were obtained through an extensive literature search. Using "in silico mutagenesis" this set was extended to 308 experimental and potential NLSs. This final set matched over 43% of all known nuclear proteins and matches no currently known non-nuclear protein. NLSdb contains over 6000 predicted nuclear proteins and their targeting signals from the PDB and SWISS-PROT/TrEMBL databases. The database also contains over 12 500 predicted nuclear proteins from six entirely sequenced eukaryotic proteomes (Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae). NLS motifs often co-localize with DNA-binding regions. This observation was used to also annotate over 1500 DNA-binding proteins. From this site you can: * Query NLSdb * Find out how to use NLSdb * Browse the entries in NLSdb * Find out if your protein has an NLS using PredictNLS * Predict subcellular localization of your protein using LOCtree

Proper citation: NLSdb: a database of nuclear localization signals (RRID:SCR_003273) Copy   


  • RRID:SCR_003485

    This resource has 1000+ mentions.

http://www.reactome.org

Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.

Proper citation: Reactome (RRID:SCR_003485) Copy   


  • RRID:SCR_003100

    This resource has 1+ mentions.

http://metacrop.ipk-gatersleben.de

Database that summarizes diverse information about metabolic pathways in crop plants and allows automatic export of information for the creation of detailed metabolic models. It contains manually curated, highly detailed information about metabolic pathways in crop plants, including pathway diagrams, reactions, locations, transport processes, reaction kinetics, taxonomy and literature. It contains information about seven major crop plants with high agronomical importance and two model plants.

Proper citation: MetaCrop (RRID:SCR_003100) Copy   


  • RRID:SCR_005413

http://cgi-www.daimi.au.dk/cgi-chili/datfap/frontdoor.py

A database of transcription factors from 13 plant species, and PCR primers for around 90% of them.

Proper citation: DATFAP (RRID:SCR_005413) Copy   


http://gpcr.biocomp.unibo.it/esldb

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 22,2022. database of protein subcellular localization annotation for eukaryotic organisms. It contains experimental annotations derived from primary protein databases, homology based annotations and computational predictions.

Proper citation: eSLDB - eukaryotic Subcellular Localization database (RRID:SCR_000052) Copy   


  • RRID:SCR_002131

    This resource has 10+ mentions.

http://caps.ncbs.res.in/stifdb2/

Database of biotic and abiotic stress responsive genes in Arabidopsis thaliana and Oryza sativa L. with options to identify probable Transcription Factor Binding Sites in their promoters. In the response to biotic stress like Bacteria and abiotic stresses like ABA, drought, cold, salinity, dehydration, UV-B, high light, heat,heavy metals etc, ten specific families of transcription factors in Arabidopsis thaliana and six in Oryza sativa L. are known to be involved. HMM-based models are used to identify binding sites of transcription factors belonging to these families. They have also consulted literature reports to cross-validate the Transcription Factor Binding Sites predicted by the method.

Proper citation: STIFDB (RRID:SCR_002131) Copy   


  • RRID:SCR_002134

    This resource has 1000+ mentions.

http://wikipathways.org/

Open and collaborative platform dedicated to curation of biological pathways. Each pathway has dedicated wiki page, displaying current diagram, description, references, download options, version history, and component gene and protein lists. Database of biological pathways maintained by and for scientific community.

Proper citation: WikiPathways (RRID:SCR_002134) Copy   


  • RRID:SCR_006250

    This resource has 100+ mentions.

http://genetrail.bioinf.uni-sb.de/

A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneTrail (RRID:SCR_006250) Copy   


http://cbl-gorilla.cs.technion.ac.il/

A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.

Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy   


http://arabidopsis.med.ohio-state.edu

An information resource of Arabidopsis promoter sequences, transcription factors and their target genes that contains three databases. *AtcisDB consists of approximately 33,000 upstream regions of annotated Arabidopsis genes (TAIR9 release) with a description of experimentally validated and predicted cis-regulatory elements. *AtTFDB contains information on approximately 1,770 transcription factors (TFs). These TFs are grouped into 50 families, based on the presence of conserved domains. *AtRegNet contains 11,355 direct interactions between TFs and target genes. They provide free download of Arabidopsis thaliana cis-regulatory database (AtcisDB) and transcription factor database (AtTFDB).

Proper citation: Arabidopsis Gene Regulatory Information Server (RRID:SCR_006928) Copy   


  • RRID:SCR_006717

    This resource has 10+ mentions.

http://www.athamap.de/

Genome wide map of putative transcription factor binding sites in Arabidopsis thaliana genome.Data in AthaMap is based on published transcription factor (TF) binding specificities available as alignment matrices or experimentally determined single binding sites.Integrated transcriptional and post transcriptional data.Provides web tools for analysis and identification of co-regulated genes. Provides web tools for database assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana.

Proper citation: AthaMap (RRID:SCR_006717) Copy   


  • RRID:SCR_002110

    This resource has 1000+ mentions.

https://plantcyc.org/content/plantcyc-15.2.0

Multi species reference database. Comprehensive plant biochemical pathway database, containing curated information from literature and computational analyses about genes, enzymes, compounds, reactions, and pathways involved in primary and secondary metabolism.

Proper citation: PlantCyc (RRID:SCR_002110) Copy   


  • RRID:SCR_008109

    This resource has 50+ mentions.

https://plantcyc.org/databases/aracyc/15.0

Curated species-specific database present at the Plant Metabolic Network. It has a large number of experimentally supported enzymes and metabolic pathways, but it also houses a substantial number of computationally predicted enzymes and pathways.

Proper citation: AraCyc (RRID:SCR_008109) Copy   


  • RRID:SCR_008918

    This resource has 10+ mentions.

http://clipserve.clip.ubc.ca/topfind

An integrated knowledgebase focused on protein termini, their formation by proteases and functional implications. It contains information about the processing and the processing state of proteins and functional implications thereof derived from research literature, contributions by the scientific community and biological databases. It lists more than 120,000 N- and C-termini and almost 10,000 cleavages. TopFIND is a resource for comprehensive coverage of protein N- and C-termini discovered by all available in silico, in vitro as well as in vivo methodologies. It makes use of existing knowledge by seamless integration of data from UniProt and MEROPS and provides access to new data from community submission and manual literature curating. It renders modifications of protein termini, such as acetylation and citrulination, easily accessible and searchable and provides the means to identify and analyse extend and distribution of terminal modifications across a protein. The data is presented to the user with a strong emphasis on the relation to curated background information and underlying evidence that led to the observation of a terminus, its modification or proteolytic cleavage. In brief the protein information, its domain structure, protein termini, terminus modifications and proteolytic processing of and by other proteins is listed. All information is accompanied by metadata like its original source, method of identification, confidence measurement or related publication. A positional cross correlation evaluation matches termini and cleavage sites with protein features (such as amino acid variants) and domains to highlight potential effects and dependencies in a unique way. Also, a network view of all proteins showing their functional dependency as protease, substrate or protease inhibitor tied in with protein interactions is provided for the easy evaluation of network wide effects. A powerful yet user friendly filtering mechanism allows the presented data to be filtered based on parameters like methodology used, in vivo relevance, confidence or data source (e.g. limited to a single laboratory or publication). This provides means to assess physiological relevant data and to deduce functional information and hypotheses relevant to the bench scientist. TopFIND PROVIDES: * Integration of protein termini with proteolytic processing and protein features * Displays proteases and substrates within their protease web including detailed evidence information * Fully supports the Human Proteome Project through search by chromosome location CONTRIBUTE * Submit your N- or C-termini datasets * Contribute information on protein cleavages * Provide detailed experimental description, sample information and raw data

Proper citation: TopFIND (RRID:SCR_008918) Copy   


  • RRID:SCR_008906

    This resource has 10+ mentions.

http://plantgrn.noble.org/LegumeIP/

LegumeIP is an integrative database and bioinformatics platform for comparative genomics and transcriptomics to facilitate the study of gene function and genome evolution in legumes, and ultimately to generate molecular based breeding tools to improve quality of crop legumes. LegumeIP currently hosts large-scale genomics and transcriptomics data, including: * Genomic sequences of three model legumes, i.e. Medicago truncatula, Glycine max (soybean) and Lotus japonicus, including two reference plant species, Arabidopsis thaliana and Poplar trichocarpa, with the annotation based on UniProt TrEMBL, InterProScan, Gene Ontology and KEGG databases. LegumeIP covers a total 222,217 protein-coding gene sequences. * Large-scale gene expression data compiled from 104 array hybridizations from L. japonicas, 156 array hybridizations from M. truncatula gene atlas database, and 14 RNA-Seq-based gene expression profiles from G. max on different tissues including four common tissues: Nodule, Flower, Root and Leaf. * Systematic synteny analysis among M. truncatula, G. max, L. japonicus and A. thaliana. * Reconstruction of gene family and gene family-wide phylogenetic analysis across the five hosted species. LegumeIP features comprehensive search and visualization tools to enable the flexible query on gene annotation, gene family, synteny, relative abundance of gene expression.

Proper citation: LegumeIP (RRID:SCR_008906) Copy   


http://inparanoid.sbc.su.se/cgi-bin/index.cgi

Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.

Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy   


http://ceolas.org/VL/mo/

Catalog of internet resources relating to biological model organisms, and is part of the Biosciences area of the Virtual Library project. The main Model Organisms Library discussed in this website are: * E. coli (bacterium) * Yeasts (Saccharomyces cerevisiae, and other species) * Dictyostelium discoideum (slime mold) * Drosophila melanogaster (fruit fly) * Xenopus laevis (African clawed frog) Many aspects of biology are similar in most or all organisms, but it is frequently much easier to study particular aspects in particular organisms - for instance, genetics is easier in small organisms that breed quickly, and very difficult in humans! The most popular model organisms have strong advantages for experimental research, and become even more useful when other scientists have already worked on them, discovering techniques, genes and other useful information.

Proper citation: The WWW Virtual Library: Model Organisms (RRID:SCR_007007) Copy   


http://www.thebiogrid.org/

Curated protein-protein and genetic interaction repository of raw protein and genetic interactions from major model organism species, with data compiled through comprehensive curation efforts.

Proper citation: Biological General Repository for Interaction Datasets (BioGRID) (RRID:SCR_007393) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X