Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 121 results
Snippet view Table view Download 121 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_006633

    This resource has 1000+ mentions.

http://rdp.cme.msu.edu

A database which provides ribosome related data services to the scientific community, including online data analysis, rRNA derived phylogenetic trees, and aligned and annotated rRNA sequences. It specifically contains information on quality-controlled, aligned and annotated bacterial and archaean 16S rRNA sequences, fungal 28S rRNA sequences, and a suite of analysis tools for the scientific community. Most of the RDP tools are now available as open source packages for users to incorporate in their local workflow.

Proper citation: Ribosomal Database Project (RRID:SCR_006633) Copy   


  • RRID:SCR_002380

    This resource has 10000+ mentions.

http://www.uniprot.org/

Collection of data of protein sequence and functional information. Resource for protein sequence and annotation data. Consortium for preservation of the UniProt databases: UniProt Knowledgebase (UniProtKB), UniProt Reference Clusters (UniRef), and UniProt Archive (UniParc), UniProt Proteomes. Collaboration between European Bioinformatics Institute (EMBL-EBI), SIB Swiss Institute of Bioinformatics and Protein Information Resource. Swiss-Prot is a curated subset of UniProtKB.

Proper citation: UniProt (RRID:SCR_002380) Copy   


http://www.mitomap.org/

Database of polymorphisms and mutations of the human mitochondrial DNA. It reports published and unpublished data on human mitochondrial DNA variation. All data is curated by hand. If you would like to submit published articles to be included in mitomap, please send them the citation and a pdf.

Proper citation: MITOMAP - A human mitochondrial genome database (RRID:SCR_002996) Copy   


  • RRID:SCR_003937

    This resource has 1+ mentions.

http://life.ccs.miami.edu/life/

LIFE search engine contains data generated from LINCS Pilot Phase, to integrate LINCS content leveraging semantic knowledge model and common LINCS metadata standards. LIFE makes LINCS content discoverable and includes aggregate results linked to Harvard Medical School and Broad Institute and other LINCS centers, who provide more information including experimental conditions and raw data. Please visit LINCS Data Portal.

Proper citation: LINCS Information Framework (RRID:SCR_003937) Copy   


  • RRID:SCR_009015

    This resource has 100+ mentions.

https://www.accordtrial.org/public

Study testing whether strict glucose control lowers the risk of heart disease and stroke in adults with type 2 diabetes. In addition the study is exploring: 1) Whether in the context of good glycemic control the use of different lowering lipid drugs will further improve these outcomes and 2) If strict control of blood pressure will also have additional beneficial effects on reducing cardiovascular disease. The design was a randomized, multicenter, double 2 X 2 factorial trial in 10,251 patients with type 2 diabetes mellitus. It was designed to test the effects on major CVD events of intensive glycemia control, of fibrate treatment to increase HDL-cholesterol and lower triglycerides (in the context of good LDL-C and glycemia control), and of intensive blood pressure control (in the context of good glycemia control), each compared to an appropriate control. All 10,251 participants were in an overarching glycemia trial. In addition, one 2 X 2 trial addressed the lipid question in 5,518 of the participants and the other 2 X 2 trial addressed the blood pressure question in 4,733 of the participants. The glycemia trial was terminated early due to higher mortality in the intensive compared with the standard glycemia treatment strategies. The results were published in June 2008 (N Eng J Med 2008;358:2545-59). Study-delivered treatment for all ACCORD participants was stopped on June 30, 2009, and the participants were assisted as needed in transferring their care to a personal physician. The lipid and blood pressure results (as well as the microvascular outcomes and eye substudy results) were published in 2010. All participants are continuing to be followed in a non-treatment observational study.

Proper citation: ACCORD (RRID:SCR_009015) Copy   


  • RRID:SCR_022566

    This resource has 1+ mentions.

https://lincsportal.ccs.miami.edu/signatures/home

Primary access point for compendium of LINCS data with substantial changes in data architecture and APIs, completely redesigned user interface, and enhanced curated metadata annotations to support more advanced, intuitive and deeper querying, exploration and analysis capabilities. LINCS datasets are accessible at data point level enabling users to directly access and download any subset of signatures across entire library independent from originating source, project or assay. Newly designed query interface enables global metadata search with autosuggest across all annotations associated with perturbations, model systems, and signatures.

Proper citation: LINCS Data Portal 2.0 (RRID:SCR_022566) Copy   


  • RRID:SCR_001551

    This resource has 10+ mentions.

http://proteomics.ucsd.edu/Software/NeuroPedia/index.html

A neuropeptide encyclopedia of peptide sequences (including genomic and taxonomic information) and spectral libraries of identified MS/MS spectra of homolog neuropeptides from multiple species.

Proper citation: NeuroPedia (RRID:SCR_001551) Copy   


http://evs.gs.washington.edu/EVS/

The goal of the project is to discover novel genes and mechanisms contributing to heart, lung and blood disorders by pioneering the application of next-generation sequencing of the protein coding regions of the human genome across diverse, richly-phenotyped populations and to share these datasets and findings with the scientific community to extend and enrich the diagnosis, management and treatment of heart, lung and blood disorders. The groups participating and collaborating in the NHLBI GO ESP include: Seattle GO - University of Washington, Seattle, WA Broad GO - Broad Institute of MIT and Harvard, Cambridge, MA WHISP GO - Ohio State University Medical Center, Columbus, OH Lung GO - University of Washington, Seattle, WA WashU GO - Washington University, St. Louis, MO Heart GO - University of Virginia Health System, Charlottesville, VA ChargeS GO - University of Texas Health Sciences Center at Houston

Proper citation: NHLBI Exome Sequencing Project (ESP) (RRID:SCR_012761) Copy   


  • RRID:SCR_014939

    This resource has 10+ mentions.

http://lincsportal.ccs.miami.edu/dcic-portal/

Portal which provides a unified interface for searching LINCS dataset packages and reagents. Users can use the portal to access datasets, small molecules, cells, genes, proteins and peptides, and antibodies.

Proper citation: LINCS Data Portal (RRID:SCR_014939) Copy   


https://www.signalingpathways.org/ominer/query.jsf

THIS RESOURCE IS NO LONGER IN SERVICE.Documented on February 25, 2022.Software tool as knowledge environment resource that accrues, develops, and communicates information that advances understanding of structure, function, and role in disease of nuclear receptors (NRs) and coregulators. It specifically seeks to elucidate roles played by NRs and coregulators in metabolism and development of metabolic disorders. Includes large validated data sets, access to reagents, new findings, library of annotated prior publications in field, and journal covering reviews and techniques.As of March 20, 2020, NURSA is succeeded by the Signaling Pathways Project (SPP).

Proper citation: Nuclear Receptor Signaling Atlas (RRID:SCR_003287) Copy   


  • RRID:SCR_022278

    This resource has 10+ mentions.

https://software.broadinstitute.org/cancer/cga/polysolver

Software tool for HLA typing based on whole exome sequencing data and infers alleles for three major MHC class I genes. Enables accurate inference of germline alleles of class I HLA-A, B and C genes and subsequent detection of mutations in these genes using inferred alleles as reference.

Proper citation: Polysolver (RRID:SCR_022278) Copy   


  • RRID:SCR_021245

    This resource has 1+ mentions.

https://appyters.maayanlab.cloud

Collection of web-based software applications that enable users to execute bioinformatics workflows without coding. Turns Jupyter notebooks into fully functional standalone web-based bioinformatics applications. Each Appyter application introduces data entry form for uploading or fetching data, as well as for selecting options for various settings. Once user presses Submit, Appyter is executed in cloud and user is presented with Jupyter Notebook report that contain results. Report includes markdown text, interactive and static figures, and source code. Appyter users can share the link to the output report, as well as download the fully executable notebook for execution on other platforms.

Proper citation: Appyters (RRID:SCR_021245) Copy   


  • RRID:SCR_017159

https://github.com/BioDepot/nbdocker

Software tool as Jupyter Notebook extension for Docker. Each Docker container encapsulates its individual computing environment to allow different programming languages and computing environments to be included in one single notebook, provides user to document code as well as computing environment.

Proper citation: nbdocker (RRID:SCR_017159) Copy   


  • RRID:SCR_007379

    This resource has 1+ mentions.

http://nsr.bioeng.washington.edu/

Database of physiological, pharmacological, and pathological information on humans and other organisms and integration through computational modeling. Models include everything from diagrammatic schema, suggesting relationships among elements composing a system, to fully quantitative, computational models describing the behavior of physiological systems and an organism''s response to environmental change. Each mathematical model is an internally self-consistent summary of available information, and thereby defines a working hypothesis about how a system operates. Predictions from such models are subject to test, with new results leading to new models.BR /> A Tool developed for the NSR Physiome project is JSim, an open source, free software. JSim is a Java-based simulation system for building quantitative numeric models and analyzing them with respect to experimental reference data. JSim''s primary focus is in physiology and biomedicine, however its computational engine is quite general and applicable to a wide range of scientific domains. JSim models may intermix ODEs, PDEs, implicit equations, integrals, summations, discrete events and procedural code as appropriate. JSim''s model compiler can automatically insert conversion factors for compatible physical units as well as detect and reject unit unbalanced equations. JSim also imports the SBML and CellML model archival formats. All JSim models are open source. Goals of the Physiome Project: - To develop and database observations of physiological phenomenon and interpret these in terms of mechanism (a fundamentally reductionist goal). - To integrate experimental information into quantitative descriptions of the functioning of humans and other organisms (modern integrative biology glued together via modeling). - To disseminate experimental data and integrative models for teaching and research. - To foster collaboration amongst investigators worldwide, to speed up the discovery of how biological systems work. - To determine the most effective targets (molecules or systems) for therapy, either pharmaceutic or genomic. - To provide information for the design of tissue-engineered, biocompatible implants.

Proper citation: NSR Physiome Project (RRID:SCR_007379) Copy   


  • RRID:SCR_007973

    This resource has 100+ mentions.

http://enhancer.lbl.gov/

Resource for experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. Central public database of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to particular tissue, or download entire collections of enhancers with defined tissue specificity or conservation depth.

Proper citation: VISTA Enhancer Browser (RRID:SCR_007973) Copy   


https://github.com/aametwally/Metabolic_Subphenotype_Predictor

Software repository contains code for Inference of T2D metabolic subphenotypes (MuscleIR, Beta-cell Function, Incretin Effect, Hepatic IR), Identification of dominant metabolic subphenotype, Feature extraction from glucose tiemseries, Extraction of reduced representation of glucose tiemseries,Visualization of metabolic phenotypes based on various glucose-related metrics,Concordance between CGM and Venous glucose values from at home and at clinical setting, Classification of metabolic subphenotypes.

Proper citation: Metabolic Subphenotype Predictor (RRID:SCR_027192) Copy   


http://www.cvrgrid.org/

Infrastructure for sharing cardiovascular data and data analysis tools. Human ExVivo heart data set and canine ExVivo normal and failing heart data sets are available. Canine hearts atlas and human InVivo atlases are available.

Proper citation: CardioVascular Research Grid (CVRG) (RRID:SCR_004472) Copy   


  • RRID:SCR_002767

    This resource has 1+ mentions.

http://www.macaque.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on June 8, 2020.Macaque genomic and proteomic resources and how they are providing important new dimensions to research using macaque models of infectious disease. The research encompasses a number of viruses that pose global threats to human health, including influenza, HIV, and SARS-associated coronavirus. By combining macaque infection models with gene expression and protein abundance profiling, they are uncovering exciting new insights into the multitude of molecular and cellular events that occur in response to virus infection. A better understanding of these events may provide the basis for innovative antiviral therapies and improvements to vaccine development strategies.

Proper citation: Macaque.org (RRID:SCR_002767) Copy   


  • RRID:SCR_002968

http://www.mybiosoftware.com/population-genetics/332

A tool for SNP Search and downloading with local management. It also offers flanking sequence downloading and automatic SNP filtering. It requires Windows and .NET Framework.

Proper citation: SNPHunter (RRID:SCR_002968) Copy   


  • RRID:SCR_003212

    This resource has 100+ mentions.

http://phenome.jax.org/

Database enables integration of genomic and phenomic data by providing access to primary experimental data, data collection protocols and analysis tools. Data represent behavioral, morphological and physiological disease-related characteristics in naive mice and those exposed to drugs, environmental agents or other treatments. Collaborative standardized collection of measured data on laboratory mouse strains to characterize them in order to facilitate translational discoveries and to assist in selection of strains for experimental studies. Includes baseline phenotype data sets as well as studies of drug, diet, disease and aging effect., protocols, projects and publications, and SNP, variation and gene expression studies. Provides tools for online analysis. Data sets are voluntarily contributed by researchers from variety of institutions and settings, or retrieved by MPD staff from open public sources. MPD has three major types of strain-centric data sets: phenotype strain surveys, SNP and variation data, and gene expression strain surveys. MPD collects data on classical inbred strains as well as any fixed-genotype strains and derivatives that are openly acquirable by the research community. New panels include Collaborative Cross (CC) lines and Diversity Outbred (DO) populations. Phenotype data include measurements of behavior, hematology, bone mineral density, cholesterol levels, endocrine function, aging processes, addiction, neurosensory functions, and other biomedically relevant areas. Genotype data are primarily in the form of single-nucleotide polymorphisms (SNPs). MPD curates data into a common framework by standardizing mouse strain nomenclature, standardizing units (SI where feasible), evaluating data (completeness, statistical power, quality), categorizing phenotype data and linking to ontologies, conforming to internal style guides for titles, tags, and descriptions, and creating comprehensive protocol documentation including environmental parameters of the test animals. These elements are critical for experimental reproducibility.

Proper citation: Mouse Phenome Database (MPD) (RRID:SCR_003212) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X