Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 97 results
Snippet view Table view Download 97 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_010963

    This resource has 10+ mentions.

http://www.complex.iastate.edu/download/Picky/

A software tool for selecting optimal oligonucleotides (oligos) that allows the rapid and efficient determination of gene-specific oligos based on given gene sets, and can be used for large, complex genomes such as human, mouse, or maize.

Proper citation: Picky (RRID:SCR_010963) Copy   


  • RRID:SCR_002821

    This resource has 10+ mentions.

http://kb.phenoscape.org/

Knowledgebase that uses ontologies to integrate phenotypic data from genetic studies of zebrafish with evolutionary variable phenotypes from the systematic literature of ostariophysan fishes. Users can explore the data by searching for anatomical terms, taxa, or gene names. The expert system enables the broad scale analysis of phenotypic variation across taxa and the co-analysis of these evolutionarily variable features with the phenotypic mutants of model organisms. The Knowledgebase currently contains 565,158 phenotype statements about 2,527 taxa, sourced from 57 publications, as well as 38,189 phenotype statements about 4,727 genes, retrieved from ZFIN. 2013-01-26.

Proper citation: Phenoscape Knowledgebase (RRID:SCR_002821) Copy   


  • RRID:SCR_003156

    This resource has 100+ mentions.

http://mirnamap.mbc.nctu.edu.tw

A database of experimentally verified microRNAs and miRNA target genes in human, mouse, rat, and other metazoan genomes. In addition to known miRNA targets, three computational tools previously developed, such as miRanda, RNAhybrid and TargetScan, were applied for identifying miRNA targets in 3'-UTR of genes. In order to reduce the false positive prediction of miRNA targets, several criteria are supported for filtering the putative miRNA targets. Furthermore, miRNA expression profiles can provide valuable clues for investigating the properties of miRNAs, such tissue specificity and differential expression in cancer/normal cell. Therefore, we performed the Q-PCR experiments for monitoring the expression profiles of 224 human miRNAs in eighteen major normal tissues in human. The cross-reference between the miRNA expression profiles and the expression profiles of its target genes can provide effective viewpoint to understand the regulatory functions of the miRNA.

Proper citation: miRNAMap (RRID:SCR_003156) Copy   


  • RRID:SCR_000514

http://www.sanger.ac.uk/cgi-bin/teams/team30/arnie

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 1,2023. Database that integrates the extracellular protein interaction network generated in our lab using AVEXIS technology with spatiotemporal expression patterns for all genes in the network. The tool allows users to browse the network by clicking on individual proteins, or by specifying the spatiotemporal parameters. Clicking on connector lines will allow users to compare stage-matched expression patterns for genes encoding interacting proteins. Additionally, users can rapidly search for their genes in the network using the BLAST server provided.

Proper citation: ARNIE (RRID:SCR_000514) Copy   


https://www.bgee.org/

Database to retrieve and compare gene expression patterns between animal species. Bgee first maps heterogeneous expression data (currently bulk RNA-Seq, scRNA-Seq, Affymetrix, in situ hybridization, and EST data) to anatomy and development of different species. Bgee is based exclusively on curated healthy wild-type expression data (e.g., no gene knock-out, no treatment, no disease), to provide a comparable reference of gene expression.

Proper citation: Bgee: dataBase for Gene Expression Evolution (RRID:SCR_002028) Copy   


http://edwardslab.bmcb.georgetown.edu/downloads/

The Peptide Sequence Database contains putative peptide sequences from human, mouse, rat, and zebrafish. Compressed to eliminate redundancy, these are about 40 fold smaller than a brute force enumeration. Current and old releases are available for download. Each species'' peptide sequence database comprises peptide sequence data from releveant species specific UniGene and IPI clusters, plus all sequences from their consituent EST, mRNA and protein sequence databases, namely RefSeq proteins and mRNAs, UniProt''s SwissProt and TrEMBL, GenBank mRNA, ESTs, and high-throughput cDNAs, HInv-DB, VEGA, EMBL, IPI protein sequences, plus the enumeration of all combinations of UniProt sequence variants, Met loss PTM, and signal peptide cleavages. The README file contains some information about the non amino-acid symbols O (digest site corresponding to a protein N- or C-terminus) and J (no digest sequence join) used in these peptide sequence databases and information about how to configure various search engines to use them. Some search engines handle (very) long sequences badly and in some cases must be patched to use these peptide sequence databases. All search engines supported by the PepArML meta-search engine can (or can be patched to) successfully search these peptide sequence databases.

Proper citation: Peptide Sequence Database (RRID:SCR_005764) Copy   


  • RRID:SCR_002469

    This resource has 10+ mentions.

http://bpg.utoledo.edu/~afedorov/lab/eid.html

Data sets of protein-coding intron-containing genes that contain gene information from humans, mice, rats, and other eukaryotes, as well as genes from species whose genomes have not been completely sequenced. This is a comprehensive and convenient dataset of sequences for computational biologists who study exon-intron gene structures and pre-mRNA splicing. The database is derived from GenBank release 112, and it contains protein-coding genes that harbor introns, along with extensive descriptions of each gene and its DNA and protein sequences, as well as splice motif information. They have created subdatabases of genes whose intron positions have been experimentally determined. The collection also contains data on untranslated regions of gene sequences and intron-less genes. For species with entirely sequenced genomes, species-specific databases have been generated. A novel Mammalian Orthologous Intron Database (MOID) has been introduced which includes the full set of introns that come from orthologous genes that have the same positions relative to the reading frames.

Proper citation: EID: Exon-Intron Database (RRID:SCR_002469) Copy   


  • RRID:SCR_012019

    This resource has 50+ mentions.

http://appris.bioinfo.cnio.es/

A database that houses annotations of human splice isoforms. It adds reliable protein structural and functional data and information from cross-species conservation. A visual representation of the annotations for each gene allows users to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, it also selects a single reference sequence for each gene, termed the principal isoform, based on the annotations of structure, function and conservation for each transcript.

Proper citation: APPRIS (RRID:SCR_012019) Copy   


  • RRID:SCR_007867

    This resource has 100+ mentions.

http://polya.umdnj.edu/

A database of mRNA polyadenylation sites. PolyA_DB version 1 contains human and mouse poly(A) sites that are mapped by cDNA/EST sequences. PolyA_DB version 2 contains poly(A) sites in human, mouse, rat, chicken and zebrafish that are mapped by cDNA/EST and Trace sequences. Sequence alignments between orthologous sites are available. PolyA_SVM predicts poly(A) sites using 15 cis elements identified for human poly(A) sites.

Proper citation: PolyA DB (RRID:SCR_007867) Copy   


  • RRID:SCR_008007

    This resource has 1000+ mentions.

http://www.chibi.ubc.ca/Gemma

Resource for reuse, sharing and meta-analysis of expression profiling data. Database and set of tools for meta analysis, reuse and sharing of genomics data. Targeted at analysis of gene expression profiles. Users can search, access and visualize coexpression and differential expression results.

Proper citation: Gemma (RRID:SCR_008007) Copy   


http://inparanoid.sbc.su.se/cgi-bin/index.cgi

Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.

Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy   


http://ceolas.org/VL/mo/

Catalog of internet resources relating to biological model organisms, and is part of the Biosciences area of the Virtual Library project. The main Model Organisms Library discussed in this website are: * E. coli (bacterium) * Yeasts (Saccharomyces cerevisiae, and other species) * Dictyostelium discoideum (slime mold) * Drosophila melanogaster (fruit fly) * Xenopus laevis (African clawed frog) Many aspects of biology are similar in most or all organisms, but it is frequently much easier to study particular aspects in particular organisms - for instance, genetics is easier in small organisms that breed quickly, and very difficult in humans! The most popular model organisms have strong advantages for experimental research, and become even more useful when other scientists have already worked on them, discovering techniques, genes and other useful information.

Proper citation: The WWW Virtual Library: Model Organisms (RRID:SCR_007007) Copy   


http://great.stanford.edu/public/html/splash.php

Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool

Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy   


  • RRID:SCR_005895

    This resource has 1+ mentions.

http://vibez.informatik.uni-freiburg.de/

An imaging and image analysis framework for virtual colocalization studies in larval zebrafish brains, currently available for 72hpf, 48hpf and 96hpf old larvae. ViBE-Z contains a database with precisely aligned gene expression patterns (1����m^3 resolution), an anatomical atlas, and a software. This software creates high-quality data sets by fusing multiple confocal microscopic image stacks, and aligns these data sets to the standard larva. The ViBE-Z database and atlas are stored in HDF5 file format. They are freely available for download. ViBE-Z provides a software that automatically maps gene expression data with cellular resolution to a 3D standard larval zebrafish (Danio rerio) brain. ViBE-Z enhances the data quality through fusion and attenuation correction of multiple confocal microscope stacks per specimen and uses a fluorescent stain of cell nuclei for image registration. It automatically detects 14 predefined anatomical landmarks for aligning new data with the reference brain. ViBE-Z performs colocalization analysis in expression databases for anatomical domains or subdomains defined by any specific pattern. The ViBE-Z database, atlas and software are provided via a web interface.

Proper citation: ViBE-Z (RRID:SCR_005895) Copy   


  • RRID:SCR_006553

    This resource has 10+ mentions.

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/

Consortium that puts sequences into a chromosome context and provides the best possible reference assembly for human, mouse, and zebrafish via FTP. Tools to facilitate the curation of genome assemblies based on the sequence overlaps of long, high quality sequences.

Proper citation: Genome Reference Consortium (RRID:SCR_006553) Copy   


  • RRID:SCR_008737

    This resource has 10+ mentions.

http://www.textpresso.org/

An information extracting and processing package for biological literature that can be used online or installed locally via a downloadable software package, http://www.textpresso.org/downloads.html Textpresso's two major elements are (1) access to full text, so that entire articles can be searched, and (2) introduction of categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or describe one (e.g., methods, etc). A search engine enables the user to search for one or a combination of these categories and/or keywords within an entire literature. The Textpresso project serves the biological and biomedical research community by providing: * Full text literature searches of model organism research and subject-specific articles at individual sites. Major elements of these search engines are (1) access to full text, so that the entire content of articles can be searched, and (2) search capabilities using categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or identify one (e.g., cell, gene, allele, etc). The search engines are flexible, enabling users to query the entire literature using keywords, one or more categories or a combination of keywords and categories. * Text classification and mining of biomedical literature for database curation. They help database curators to identify and extract biological entities and facts from the full text of research articles. Examples of entity identification and extraction include new allele and gene names and human disease gene orthologs; examples of fact identification and extraction include sentence retrieval for curating gene-gene regulation, Gene Ontology (GO) cellular components and GO molecular function annotations. In addition they classify papers according to curation needs. They employ a variety of methods such as hidden Markov models, support vector machines, conditional random fields and pattern matches. Our collaborators include WormBase, FlyBase, SGD, TAIR, dictyBase and the Neuroscience Information Framework. They are looking forward to collaborating with more model organism databases and projects. * Linking biological entities in PDF and online journal articles to online databases. They have established a journal article mark-up pipeline that links select content of Genetics journal articles to model organism databases such as WormBase and SGD. The entity markup pipeline links over nine classes of objects including genes, proteins, alleles, phenotypes, and anatomical terms to the appropriate page at each database. The first article published with online and PDF-embedded hyperlinks to WormBase appeared in the September 2009 issue of Genetics. As of January 2011, we have processed around 70 articles, to be continued indefinitely. Extension of this pipeline to other journals and model organism databases is planned. Textpresso is useful as a search engine for researchers as well as a curation tool. It was developed as a part of WormBase and is used extensively by C. elegans curators. Textpresso has currently been implemented for 24 different literatures, among them Neuroscience, and can readily be extended to other corpora of text.

Proper citation: Textpresso (RRID:SCR_008737) Copy   


  • RRID:SCR_008919

    This resource has 1+ mentions.

http://crezoo.crt-dresden.de/crezoo/

Database of helpful set of CreERT2 driver lines expressing in various regions of the developing and adult zebrafish. The lines have been generated via the insertion of a mCherry-T2A-CreERT2 in a gene trap approach or by using promoter fragments driving CreERT2. You can search the list of all transgenic lines or single entries by insertions (gene) or expression patterns (anatomy/region). In most cases the CreERT2 expression profile using in situ hybridization at 24 hpf and 48 hpf is shown, but also additional information (e.g. mCherry or CreERT2 expression at adult stages, transactivation of a Cre-dependent reporter line) is displayed. Currently, not all insertions have been mapped to a genomic location but the database will be regularly updated adding newly generated insertions and mapping information. Your help in improving and broadening the database by giving your opinion or knowledge of expression patterns is highly appreciated.

Proper citation: CreZoo (RRID:SCR_008919) Copy   


  • RRID:SCR_000662

    This resource has 10+ mentions.

http://www.stanford.edu/group/nusselab/cgi-bin/wnt/

A resource for members of the Wnt community, providing information on progress in the field, maps on signaling pathways, and methods. The page on reagents lists many resources generously made available to and by the Wnt community. Wnt signaling is discussed in many reviews and in a recent book. There are usually several Wnt meetings per year.

Proper citation: Wnt homepage (RRID:SCR_000662) Copy   


  • RRID:SCR_001610

    This resource has 1+ mentions.

https://wiki.phenoscape.org/wiki/Teleost_Anatomy_Ontology

A multi-species anatomy ontology for teleost fishes. It was originally seeded from ZFA, but covers terms relevant to other taxa. The TAO uses terms from the Common Anatomy Reference Ontology (CARO) as a template for its upper level nodes, and the Vertebrate Skeletal Anatomy Ontology (VSAO) for general skeletal anatomy classes. Growth of the TAO is enabled by contributions from data curators and the ichthyological community. The TAO can be browsed by using the NCBO BioPortal and data annotated using TAO terms can be queried using the Phenoscape Knowedgebase.

Proper citation: Teleost Anatomy Ontology (RRID:SCR_001610) Copy   


  • RRID:SCR_001378

    This resource has 1+ mentions.

http://www.morpholinodatabase.org/

Central database to house data on morpholino screens currently containing over 700 morpholinos including control and multiple morpholinos against the same target. A publicly accessible sequence-based search opens this database for morpholinos against a particular target for the zebrafish community. Morpholino Screens: They set out to identify all cotranslationally translocated genes in the zebrafish genome (Secretome/CTT-ome). Morpholinos were designed against putative secreted/CTT targets and injected into 1-4 cell stage zebrafish embryos. The embryos were observed over a 5 day period for defects in several different systems. The first screen examined 184 gene targets of which 26 demonstrated defects of interest (Pickart et al. 2006). A collaboration with the Verfaillie laboratory examined the knockdown of targets identified in a comparative microarray analysis of hematopoietic stem cells demonstrating how microarray and morpholino technologies can be used in conjunction to enrich for defects in specific developmental processes. Currently, many collaborations are underway to identify genes involved in morphological, kidney, skin, eye, pigment, vascular and hematopoietic development, lipid metabolism and more. The screen types referred to in the search functions are the specific areas of development that were examined during the various screens, which include behavior, general morphology, pigmentation, toxicity, Pax2 expression, and development of the craniofacial structures, eyes, kidneys, pituitary, and skin. Only data pertaining to specific tests performed are presented. Due to the complexity of this international collaboration and time constraints, not all morpholinos were subjected to all screen types. They are currently expanding public access to the database. In the future we will provide: * Mortality curves and dose range for each morpholino * Preliminary data regarding the effectiveness of each morpholino * Expanded annotation for each morpholino * External linkage of our morpholino sequences to ZFIN and Ensembl. To submit morpholino-knockdown results to MODB please contact the administrator for a user name and password.

Proper citation: Morpholino Database (RRID:SCR_001378) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X