Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 57 results
Snippet view Table view Download 57 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_002172

    This resource has 100+ mentions.

http://www.genoscope.cns.fr/spip/spip.php?lang=en

French national sequencing center with the following resources: * Sequencing ** Genoscope Projects * Environmental genomics ** Microbial diversity in wastewater ** Metabolic genomics * Bioinformatics ** Atelier for comparative genomics ** Computational Systems Biology ** Servers resources *** GGB for Generic Genome Browser: graphic interface for various databases (sequence, annotation, syntenies...) for a given organism. *** MaGe for Magnifying Microbial Genomes: annotation system for microbial genomes.

Proper citation: Genoscope (RRID:SCR_002172) Copy   


http://www.scienceexchange.com/facilities/vib-compound-screening-facility

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 15,2024. Compound screening facility that has several drug-like compound collections available that amount to a total of about 74,000 compounds and a human siRNA library that targets almost 8,000 genes. State-of-the-art liquid handling systems and detection technologies are available for screening in-house or custom collections in 96- or 384-well plate format. The platform is compatible with biochemical assays, cell-based assays in a broad range of cellular systems and assays in the model plant Arabidopsis thaliana. Its core activities consist of managing the VIB screening collections, assisting researchers in assay development / automation and performing high-throughput screenings. After hit clustering and selection, the VIB-CSF team can contribute in structure-activity analysis, IC50 measurements, cytotoxicity analysis, secondary screening for hit validation and counter screening for specificity analysis.

Proper citation: VIB Compound Screening Facility (RRID:SCR_012256) Copy   


  • RRID:SCR_003100

    This resource has 1+ mentions.

http://metacrop.ipk-gatersleben.de

Database that summarizes diverse information about metabolic pathways in crop plants and allows automatic export of information for the creation of detailed metabolic models. It contains manually curated, highly detailed information about metabolic pathways in crop plants, including pathway diagrams, reactions, locations, transport processes, reaction kinetics, taxonomy and literature. It contains information about seven major crop plants with high agronomical importance and two model plants.

Proper citation: MetaCrop (RRID:SCR_003100) Copy   


  • RRID:SCR_005413

http://cgi-www.daimi.au.dk/cgi-chili/datfap/frontdoor.py

A database of transcription factors from 13 plant species, and PCR primers for around 90% of them.

Proper citation: DATFAP (RRID:SCR_005413) Copy   


http://gpcr.biocomp.unibo.it/esldb

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 22,2022. database of protein subcellular localization annotation for eukaryotic organisms. It contains experimental annotations derived from primary protein databases, homology based annotations and computational predictions.

Proper citation: eSLDB - eukaryotic Subcellular Localization database (RRID:SCR_000052) Copy   


  • RRID:SCR_002131

    This resource has 10+ mentions.

http://caps.ncbs.res.in/stifdb2/

Database of biotic and abiotic stress responsive genes in Arabidopsis thaliana and Oryza sativa L. with options to identify probable Transcription Factor Binding Sites in their promoters. In the response to biotic stress like Bacteria and abiotic stresses like ABA, drought, cold, salinity, dehydration, UV-B, high light, heat,heavy metals etc, ten specific families of transcription factors in Arabidopsis thaliana and six in Oryza sativa L. are known to be involved. HMM-based models are used to identify binding sites of transcription factors belonging to these families. They have also consulted literature reports to cross-validate the Transcription Factor Binding Sites predicted by the method.

Proper citation: STIFDB (RRID:SCR_002131) Copy   


http://arabidopsis.med.ohio-state.edu

An information resource of Arabidopsis promoter sequences, transcription factors and their target genes that contains three databases. *AtcisDB consists of approximately 33,000 upstream regions of annotated Arabidopsis genes (TAIR9 release) with a description of experimentally validated and predicted cis-regulatory elements. *AtTFDB contains information on approximately 1,770 transcription factors (TFs). These TFs are grouped into 50 families, based on the presence of conserved domains. *AtRegNet contains 11,355 direct interactions between TFs and target genes. They provide free download of Arabidopsis thaliana cis-regulatory database (AtcisDB) and transcription factor database (AtTFDB).

Proper citation: Arabidopsis Gene Regulatory Information Server (RRID:SCR_006928) Copy   


http://www.thebiogrid.org/

Curated protein-protein and genetic interaction repository of raw protein and genetic interactions from major model organism species, with data compiled through comprehensive curation efforts.

Proper citation: Biological General Repository for Interaction Datasets (BioGRID) (RRID:SCR_007393) Copy   


  • RRID:SCR_002469

    This resource has 10+ mentions.

http://bpg.utoledo.edu/~afedorov/lab/eid.html

Data sets of protein-coding intron-containing genes that contain gene information from humans, mice, rats, and other eukaryotes, as well as genes from species whose genomes have not been completely sequenced. This is a comprehensive and convenient dataset of sequences for computational biologists who study exon-intron gene structures and pre-mRNA splicing. The database is derived from GenBank release 112, and it contains protein-coding genes that harbor introns, along with extensive descriptions of each gene and its DNA and protein sequences, as well as splice motif information. They have created subdatabases of genes whose intron positions have been experimentally determined. The collection also contains data on untranslated regions of gene sequences and intron-less genes. For species with entirely sequenced genomes, species-specific databases have been generated. A novel Mammalian Orthologous Intron Database (MOID) has been introduced which includes the full set of introns that come from orthologous genes that have the same positions relative to the reading frames.

Proper citation: EID: Exon-Intron Database (RRID:SCR_002469) Copy   


  • RRID:SCR_013457

    This resource has 1+ mentions.

http://rarge.psc.riken.jp/rartf/

Database of complete sets of Arabidopsis transcription factors with a variety of information on Arabidopsis thaliana transcription factor families including: full-length cDNA sequences, Ds-tagged mutants, multiple sequences alignments of family members, phylogenic trees, functional motifs, and so on. In addition, expression profiles of all transcription factor genes are available.

Proper citation: RARTF (RRID:SCR_013457) Copy   


  • RRID:SCR_008886

http://dnatraffic.ibb.waw.pl/

DNAtraffic database is dedicated to be an unique comprehensive and richly annotated database of genome dynamics during the cell life. DNAtraffic contains extensive data on the nomenclature, ontology, structure and function of proteins related to control of the DNA integrity mechanisms such as chromatin remodeling, DNA repair and damage response pathways from eight model organisms commonly used in the DNA-related study: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Escherichia coli and Arabidopsis thaliana. DNAtraffic contains comprehensive information on diseases related to the assembled human proteins. Database is richly annotated in the systemic information on the nomenclature, chemistry and structure of the DNA damage and drugs targeting nucleic acids and/or proteins involved in the maintenance of genome stability. One of the DNAtraffic database aim is to create the first platform of the combinatorial complexity of DNA metabolism pathway analysis. Database includes illustrations of pathway, damage, protein and drug. Since DNAtraffic is designed to cover a broad spectrum of scientific disciplines it has to be extensively linked to numerous external data sources. Database represents the result of the manual annotation work aimed at making the DNAtraffic database much more useful for a wide range of systems biology applications. DNAtraffic database is freely available and can be queried by the name of DNA network process, DNA damage, protein, disease, and drug.

Proper citation: DNAtraffic (RRID:SCR_008886) Copy   


http://inparanoid.sbc.su.se/cgi-bin/index.cgi

Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.

Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy   


http://ceolas.org/VL/mo/

Catalog of internet resources relating to biological model organisms, and is part of the Biosciences area of the Virtual Library project. The main Model Organisms Library discussed in this website are: * E. coli (bacterium) * Yeasts (Saccharomyces cerevisiae, and other species) * Dictyostelium discoideum (slime mold) * Drosophila melanogaster (fruit fly) * Xenopus laevis (African clawed frog) Many aspects of biology are similar in most or all organisms, but it is frequently much easier to study particular aspects in particular organisms - for instance, genetics is easier in small organisms that breed quickly, and very difficult in humans! The most popular model organisms have strong advantages for experimental research, and become even more useful when other scientists have already worked on them, discovering techniques, genes and other useful information.

Proper citation: The WWW Virtual Library: Model Organisms (RRID:SCR_007007) Copy   


  • RRID:SCR_005709

    This resource has 1000+ mentions.

http://genemania.org/

Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMANIA (RRID:SCR_005709) Copy   


  • RRID:SCR_008109

    This resource has 50+ mentions.

https://plantcyc.org/databases/aracyc/15.0

Curated species-specific database present at the Plant Metabolic Network. It has a large number of experimentally supported enzymes and metabolic pathways, but it also houses a substantial number of computationally predicted enzymes and pathways.

Proper citation: AraCyc (RRID:SCR_008109) Copy   


  • RRID:SCR_008918

    This resource has 10+ mentions.

http://clipserve.clip.ubc.ca/topfind

An integrated knowledgebase focused on protein termini, their formation by proteases and functional implications. It contains information about the processing and the processing state of proteins and functional implications thereof derived from research literature, contributions by the scientific community and biological databases. It lists more than 120,000 N- and C-termini and almost 10,000 cleavages. TopFIND is a resource for comprehensive coverage of protein N- and C-termini discovered by all available in silico, in vitro as well as in vivo methodologies. It makes use of existing knowledge by seamless integration of data from UniProt and MEROPS and provides access to new data from community submission and manual literature curating. It renders modifications of protein termini, such as acetylation and citrulination, easily accessible and searchable and provides the means to identify and analyse extend and distribution of terminal modifications across a protein. The data is presented to the user with a strong emphasis on the relation to curated background information and underlying evidence that led to the observation of a terminus, its modification or proteolytic cleavage. In brief the protein information, its domain structure, protein termini, terminus modifications and proteolytic processing of and by other proteins is listed. All information is accompanied by metadata like its original source, method of identification, confidence measurement or related publication. A positional cross correlation evaluation matches termini and cleavage sites with protein features (such as amino acid variants) and domains to highlight potential effects and dependencies in a unique way. Also, a network view of all proteins showing their functional dependency as protease, substrate or protease inhibitor tied in with protein interactions is provided for the easy evaluation of network wide effects. A powerful yet user friendly filtering mechanism allows the presented data to be filtered based on parameters like methodology used, in vivo relevance, confidence or data source (e.g. limited to a single laboratory or publication). This provides means to assess physiological relevant data and to deduce functional information and hypotheses relevant to the bench scientist. TopFIND PROVIDES: * Integration of protein termini with proteolytic processing and protein features * Displays proteases and substrates within their protease web including detailed evidence information * Fully supports the Human Proteome Project through search by chromosome location CONTRIBUTE * Submit your N- or C-termini datasets * Contribute information on protein cleavages * Provide detailed experimental description, sample information and raw data

Proper citation: TopFIND (RRID:SCR_008918) Copy   


  • RRID:SCR_008906

    This resource has 10+ mentions.

http://plantgrn.noble.org/LegumeIP/

LegumeIP is an integrative database and bioinformatics platform for comparative genomics and transcriptomics to facilitate the study of gene function and genome evolution in legumes, and ultimately to generate molecular based breeding tools to improve quality of crop legumes. LegumeIP currently hosts large-scale genomics and transcriptomics data, including: * Genomic sequences of three model legumes, i.e. Medicago truncatula, Glycine max (soybean) and Lotus japonicus, including two reference plant species, Arabidopsis thaliana and Poplar trichocarpa, with the annotation based on UniProt TrEMBL, InterProScan, Gene Ontology and KEGG databases. LegumeIP covers a total 222,217 protein-coding gene sequences. * Large-scale gene expression data compiled from 104 array hybridizations from L. japonicas, 156 array hybridizations from M. truncatula gene atlas database, and 14 RNA-Seq-based gene expression profiles from G. max on different tissues including four common tissues: Nodule, Flower, Root and Leaf. * Systematic synteny analysis among M. truncatula, G. max, L. japonicus and A. thaliana. * Reconstruction of gene family and gene family-wide phylogenetic analysis across the five hosted species. LegumeIP features comprehensive search and visualization tools to enable the flexible query on gene annotation, gene family, synteny, relative abundance of gene expression.

Proper citation: LegumeIP (RRID:SCR_008906) Copy   


  • RRID:SCR_015585

    This resource has 1+ mentions.

https://www.cpib.ac.uk/tools-resources/software/roottrace/

Software tool which allows the automatic and high throughput measure of root length, as well as extra associated measures such as curvature. The user must supply start points for each root, and exemplar patches of nearby background. The software will then trace the main root to the tip, in every image in a timeseries, and record the results.

Proper citation: RootTrace (RRID:SCR_015585) Copy   


  • RRID:SCR_003485

    This resource has 1000+ mentions.

http://www.reactome.org

Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.

Proper citation: Reactome (RRID:SCR_003485) Copy   


  • RRID:SCR_002834

    This resource has 10+ mentions.

http://www.greenphyl.org/

A database designed for plant comparative and functional genomics based on complete genomes. It comprises complete proteome sequences from the major phylum of plant evolution. The clustering of these proteomes was performed to define a consistent and extensive set of homeomorphic plant families. Based on this, lists of gene families such as plant or species specific families and several tools are provided to facilitate comparative genomics within plant genomes. The analyses follow two main steps: gene family clustering and phylogenomic analysis of the generated families. Once a group of sequences (cluster) is validated, phylogenetic analyses are performed to predict homolog relationships such as orthologs and ultraparalogs.

Proper citation: GreenPhylDB (RRID:SCR_002834) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X