SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.brainvoyager.de/BV2000OnlineHelp/BrainVoyagerWebHelp/Talairach_brain_atlas.htm
The Talairach brain atlas visualized via BrainVoyager (Commercial software) can be used to visualize Brodmann areas as they were defined for the Talairach brain (Talairach & Tournaux, 1988) and to compare regions of subjects with respect to the Brodmann areas. The demarcated areas are based on the Talairach demon, which is a digitized version of the Talairach atlas and which has been transferred into BrainVoyager VOI files by Matthias Ruf, Mannheim. Using the Brodman.voi file you may ask questions like the following: What is the signal time course of subject N in experiment A within Brodmann area X ?. Note, however, that the defined areal boundaries should be used only as a rough guideline for determining the location of activated regions: There is substantial variation of histologically defined areas between subjects. Since cytoarchitectonically defined Brodmann areas are not available in vivo, we advise to use the provided information with care. The TalairachBrain.vmr file is located in the same folder as your BrainVoyager executable file. It can be loaded as any VMR project by using the Open... item in the File menu (or the Open icon). The TalairachBrain.vmr file is also loaded automatically when using the glass brain visualization tool.
Proper citation: BrainVoyager: Talairach Brain Atlas (RRID:SCR_008800) Copy
PathoNet is a virtual meeting place for pathologists from all over the world. They can use it as a virtual pathology laboratory in which they can exchange their views on their cases. Join us and share your experience. Special or rare cases maybe very useful in the diagnostic practice. Everybody who would like to use digital microscopy in human, veterinary or forensic pathology; in laboratory medicine, in human anatomy; in experimental research, and when teaching can benefit from this resource. Additionally, practicing physicians, students, tutors, experts and researchers can all contribute and benefit from PathoNet. Sponsors: This resource is supported by 3DHISTECH Ltd.
Proper citation: PATHONET (RRID:SCR_008674) Copy
http://www.muschealth.com/multimedia/Podcasts/index.aspx?type=main
The MUSChealth.com Podcast Library, featuring podcasts on a variety of topics related to your health and our services here at MUSC. These medical podcasts are hosted by MUSC faculty, physicians and special guests and are produced and directed by Linda Austin, M.D. Current topics include: * Academics and Education * Aging, Geriatrics and Caregiving * Alcohol and Drug Dependency * Allergies and Asthma * Ashley River Tower * Bones, Joints, Muscles and Spine * Cancer * Children''s Health * Cosmetic Surgery * Dental * Dermatology/Skin Problems * Diabetes, Endocrinology and Metabolism * Digestive Health * ENT: Ear, Nose and Throat * Executive Health * Eye Health * General Health and Wellness * Heart and Vascular Health * Hospice * Kohl''s Take a Minute for Kids * Lungs and Breathing * Men''s Health * Mental Health * MUSC News and Events * Neurological Health * Organ Transplant * Osteoporosis * Pregnancy - Week by Week * Pregnancy and Childbirth * Radiology * Research and Clinical Trials * SC Health, Leadership and Policy * Sports Medicine * Stroke * Urology * Weight Loss Surgery Follow-up * Weight Management * Women''s Health
Proper citation: MUSC Health Podcast Library (RRID:SCR_008827) Copy
Common repository for diverse human microbiome datsets and minimum reporting standards for Common Fund Human Microbiome Project.
Proper citation: HMP Data Analysis and Coordination Center (RRID:SCR_004919) Copy
http://vision.ucsf.edu/hortonlab/index.html
Devise better ways to prevent and treat vision loss due to amblyopia and strabismus, and to advance medical science by understanding the human visual system. Various Images, Videos and Talks related to the research are available. In the Laboratory for Visual Neuroscience at the University of California, San Francisco, we are seeking to discover how visual perception occurs in the human brain. The function of the visual system is to guide our behavior by providing an efficient means for the rapid assimilation of information from the environment. As we navigate through our surroundings, a continuous stream of light images impinges on our eyes. In the back of each eye a light-sensitive tissue, the retina, converts patterns of light energy into electrical discharges known as action potentials. These signals are conveyed along the axons of retinal ganglion cells to the lateral geniculate body, a relay nucleus in the thalamus. Most of the output of the lateral geniculate body is relayed directly to the primary visual cortex (striate cortex, V1), and then to surrounding visual association areas. To understand the function of the visual pathways, our research is focused on 5 major themes: * Organization of Primary Visual Cortex * Mapping of Extrastriate Visual Cortex * Amblyopia and Visual Development * Strabismus and Visual Suppression * The Human Visual Cortex
Proper citation: UCSF Laboratory for Visual Neuroscience (RRID:SCR_004913) Copy
There are a lot of fine blogs out there covering the avalance of current neuroscience research. With this blog Thomas Rams��y & Martin Skov want to highlight the many consequences of this growing understanding of the human brain. We are especially interested in two types of consequences: Tinkering with the brain and What is it like to be a human being? * Tinkering with the brain: First and foremost, with an understanding of how the brain works comes the possibility of tinkering with it. We already use billions of dollars every year on psychopharmocologia trying to treat depression, schizophrenia, obsessive-compulsive disorder and other mental diseases. But should we also use our knowledge of the brain to treat undesirable mental traits such as pedophilia or sociopathy? And what about enhancing normal brains? Clearly, evolution hasn''t endowed us with the most efficient brain imaginable. Shouldn''t we do something about its many shortcomings? * What is it like to be a human being?: Secondly, our view of human behavior is sure to change with our improved understanding of the human brain. Our knowledge of core human faculties such as language, social reasoning, aesthetics, and economics is already being challenged by modern neuroscience, yielding multiple hard questions. Do we have a free will? Is the mind innate or plastic? If people are not responsible for their actions (since all actions are caused by blind molecular processes) does our legal system still make sense? In short, will modern neuroscience come to completely redefine human nature? We try to discuss contemporary research literature, not just news reports. Although we will occasionally also target popular science reports, since we believe they play an important role in dissemining lessons from the lab. And in the future we plan to also post interviews with interesting researchers, as well as link to our own publications in journals and books. Additionally, the latest and most important books in the multidisciplinary field of neuroscience, cognition, psychology, ethics and economics are presented.
Proper citation: BrainEthics (RRID:SCR_005530) Copy
http://hnrc.hivresearch.ucsd.edu/
The mission of the HIV Neurobehavioral Research Center (HNRC) is to increase our understanding of how HIV and other diseases affect the human nervous system. The HNRC conducts local, national, and international research devoted to advancing our knowledge of the prevention, diagnosis and treatment of HIV-related diseases as they affect the brain and nervous system, and result in impairment of everyday functioning. Research areas of the Center include: - The incidence, prevalence, and features of neurocognitive impairment caused by HIV - The attributes of the virus, host, and host-virus interactions that determine the presentation of HIV-associated neurocognitive disorders - Possible molecular and cellular mechanisms of nervous system impairment, including the mechanisms by which host-virus factors generate neural injury and neurobehavioral disorders - The cerebrospinal fluid (CSF) as a window on CNS events * The role of co-pathogens and comorbidities in neuroAIDS (e.g., hepatitis C infection, methamphetamine abuse) - Real life implications of neurocognitive impairment in terms of work, daily life, and survival - The effects of HIV disease and neurocognitive impairment on family and social adaptation - NeuroAIDS in resource limited settings - Treatments for neurocognitive impairment and behavioral interventions HNRC also has a Developmental Grants Program (DGP), the primary goal of which is the initiation of innovative studies by junior faculty and trainees at UCSD or affiliated institutions with the following objectives: 1. Recruitment to neuroAIDS research of new investigators or established investigators without prior experience in the field; 2. Generation and pilot testing of new research initiatives; 3. Fostering collaboration among investigators from throughout Southern California. The program provides to qualified investigators and trainees any appropriate combination of the following forms of support: 1. Small, 1-2 year grants to support pilot studies; 2. Access to HNRC core resources such as data, specimens, participants, equipment, administrative support, or expert consultation and technical assistance. Lastly, The the NHRC Mentored Investigator Program recruits, supports, and follows the progress of graduate students, postdoctoral (Ph.D. or M.D.) fellows, and junior faculty in disciplines relevant to HNRC research. The HNRC is committed to tailoring our training opportunities to the backgrounds and interests of candidates from a variety of disciplines who join us with various levels of training and experience in research. We have and will continue to provide training and mentoring of medical students, doctoral students in clinical psychology, and postdoctoral fellows in Medicine, Psychiatry, Neurology, and Psychology. Sponsors: The Center is supported by public funding from the National Institutes of Health, the State of California, and other sources.
Proper citation: HIV Neurobehavioral Research Center (RRID:SCR_005370) Copy
http://fcon_1000.projects.nitrc.org/
Collection of resting state fMRI (R-fMRI) datasets from sites around world. It demonstrates open sharing of R-fMRI data and aims to emphasize aggregation and sharing of well-phenotyped datasets.
Proper citation: 1000 Functional Connectomes Project (RRID:SCR_005361) Copy
http://www.med.harvard.edu/AANLIB/
An atlas of normal and abnormal brain images intended as an introduction to basic neuroanatomy, with emphasis on the pathoanatomy of several leading central nervous system diseases that integrates clinical information with magnetic resonance (MR), x-ray computed tomography (CT), and nuclear medicine images. A range of brain abnormalities are presented including examples of certain brain disease presented with various combinations of image type and imaging frequency. Submissions of concise, exemplary, clinically driven examples of neuroimaging are welcome.
Proper citation: Whole Brain Atlas (RRID:SCR_005390) Copy
http://www.bscs.org/science-mental-illness
A set of lessons for students used to gain insight into the biological basis of mental illnesses and how scientific evidence and research can help us understand its causes and lead to treatments and, ultimately, cures. Both the Web version and the free supplement are available. It is a creative, inquiry-based instruction program designed to promote active learning and stimulate student interest in medical topics. This curriculum supplement aims to help students experience the process of scientific inquiry and develop an enhanced understanding of the nature and methods of science.
Proper citation: Science of Mental Illness: Grades 6- 8 (RRID:SCR_005612) Copy
http://science.education.nih.gov/home2.nsf/feature/index.htm
The NIH Office of Science Education (OSE) coordinates science education activities at the NIH and develops and sponsors science education projects in house. These programs serve elementary, secondary, and college students and teachers and the public. Activities * Develop curriculum supplements and other educational materials related to medicine and research through collaborations with scientific experts at NIH * Maintain a website as a central source of information about NIH science education resources * Establish national model programs in public science education, such as the NIH Mini-Med School and Science in the Cinema * Promote science education reform as outlined in the National Science Education Standards and related guidelines The OSE was established in 1991 within the Office of Science Policy of the Office of the Director of the National Institutes of Health. The NIH is the world''s foremost biomedical research center and the U.S. federal government''s focal point for such research. It is one of the components of the Department of Health and Human Services (HHS). The Office of Science Education (OSE) plans, develops, and coordinates a comprehensive science education program to strengthen and enhance efforts of the NIH to attract young people to biomedical and behavioral science careers and to improve science literacy in both adults and children. The function of the Office is as follows: (1) develops, supports, and directs new program initiatives at all levels with special emphasis on targeting students in grades kindergarten to 16, their educators and parents, and the general public; (2) advises NIH leadership on science education issues; (3) examines and evaluates research and emerging trends in science education and literacy for policy making; (4) works closely with the NIH extramural, intramural, women''s health, laboratory animal research, and minority program offices on science education special issues and programs to ensure coordination of NIH efforts; (5) works with NIH institutes, centers, and divisions to enhance communication of science education activities; and (6) works cooperatively with other public- and private-sector organizations to develop and coordinate activities.
Proper citation: NIH Office of Science Education (RRID:SCR_005603) Copy
http://en.wikibooks.org/wiki/MINC/Atlases
A linear average model atlas produced by the International Consortium for Brain Mapping (ICBM) project. A set of full- brain volumetric images from a normative population specifically for the purposes of generating a model were collected by the Montreal Neurological Institute (MNI), UCLA, and University of Texas Health Science Center at San Antonio Research Imaging Center (RIC). 152 new subjects were scanned using T1, T2 and PD sequences using a specific protocol. These images were acquired at a higher resolution than the original average 305 data and exhibit improved contrast due predominately to advances in imaging technology. Each individual was linearly registered to the average 305 and a new model was formed. In total, three models were created at the MNI, the ICBM152_T1, ICBM152_T2 and ICBM152_PD from 152 normal subjects. This resulting model is now known as the ICBM152 (although the model itself has not been published). One advantage of this model is that it exhibits better contrast and better definition of the top of the brain and the bottom of the cerebellum due to the increased coverage during acquisition. The entirely automatic analysis pipeline of this data also included grey/white matter segmentation via spatial priors. The averaged results of these segmentations formed the first MNI parametric maps of grey and white matter. The maps were never made publicly available in isolation but have formed parts of other packages for some time including SPM, FSL AIR and as models of grey matter for EEG source location in VARETTA and BRAINWAVE. Again, as these models are an approximation of Talairach space, there are differences in varying areas, to continue our use of origin shift as an example, the ICBM models are approximately 152: +3.5mm in Z and +-co-ordinate -3.5mm and 2.0mm in Y as compared to the original Talairach origin. In addition to the standard analysis performed on the ICBM data, 64 of the subjects data were segmented using model based segmentation. 64 of the original 305 were manually outlined and a resulting parametric VOI atlas built. The native data from these acquisitions was 256x256 with 1mm slices. The final image resolution of this data was 181x217x181 with 1mm isotropic voxels. Refer to the ICBM152 NonLinear if you are fitting an individual to model and do not care about left/right comparisons. A short history of the various atlases that have been produced at the BIC (McConnell Brain Imaging Center, Montreal Neurological Institute) is provided.
Proper citation: MINC/Atlases (RRID:SCR_005281) Copy
http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html#
A grassroots initiative dedicated to accelerating the scientific community''''s understanding of the neural basis of ADHD through the implementation of open data-sharing and discovery-based science. They believe that a community-wide effort focused on advancing functional and structural imaging examinations of the developing brain will accelerate the rate at which neuroscience can inform clinical practice. The ADHD-200 Global Competition invited participants to develop diagnostic classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging (MRI) of the brain. Applying their tools, participants provided diagnostic labels for previously unlabeled datasets. The competition assessed diagnostic accuracy of each submission and invited research papers describing novel, neuroscientific ideas related to ADHD diagnosis. Twenty-one international teams, from a mix of disciplines, including statistics, mathematics, and computer science, submitted diagnostic labels, with some trying their hand at imaging analysis and psychiatric diagnosis for the first time. The data for the competition was provided by the ADHD-200 Consortium. Consortium members from institutions around the world provided de-identified, HIPAA compliant imaging datasets from almost 800 children with and without ADHD. A phenotypic file including all of the test set subjects and their diagnostic codes can be downloaded. Winner is presented. The ADHD-200 consortium included: * Brown University, Providence, RI, USA (Brown) * The Kennedy Krieger Institute, Baltimore, MD, USA (KKI) * The Donders Institute, Nijmegen, The Netherlands (NeuroImage) * New York University Medical Center, New York, NY, USA (NYU) * Oregon Health and Science University, Portland, OR, USA (OHSU) * Peking University, Beijing, P.R.China (Peking 1-3) * The University of Pittsburgh, Pittsburgh, PA, USA (Pittsburgh) * Washington University in St. Louis, St. Louis, MO, USA (WashU)
Proper citation: ADHD-200 Sample (RRID:SCR_005358) Copy
On March 8, 2008 in Havana, the Latin American Network for Brain Mapping (LABMAN) was created with participants from Argentina, Brazil, Colombia, Cuba and Mexico. The focus of LABMAN is to promote neuroimaging and systems neuroscience in the region through the implementation of training and exchange programs, and to increase public awareness of the Latin American potential to contribute both to basic and applied research in human brain mapping. The immediate LABMAN goals are to: * Train specialists in all major imaging techniques. * Expedite the transfer of new scientific and technical knowledge from abroad. * Increase the scientific productivity of the region. * Drastically increase the awareness of local governments, international organizations and of the general public of brain mapping results on potential. * Organize multinational projects in areas of special relevance to the region, e.g. nutrition, pediatric development, neurodegeneration. Latin American Brain Mapping Network (LABMAN) participants : * Cuban Neuroscience Center * University of Buenos Aires * University of Sao Paulo * Universidad del Valle, Cal��, Colombia * UAM Iztapalapa, Mexico City, Mexico
Proper citation: Latin American Brain Mapping Network (LABMAN) (RRID:SCR_005509) Copy
http://www.catstests.com/Product05.htm
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. CATs Card Sort is a free, general purpose card sorting program which allows the user to design sorting tasks similar to those described by Vigotsky (1934), Weigel (1941), and Grant and Berg (1948). Card sorting tasks have been shown to be particularly sensitive to frontal lobe dysfunction, but have also shown sensitivity to motor disorders, schizophrenia, chronic alcoholism, aging, and attention deficit disorder. The CATs Card Sort package provides extensive flexibility in the development of stimulus cards, allowing the experimenter to define the relevant dimensions of cards in terms of figures, letters or words, figure/letter/word color, card color, figure/letter numerosity, and a user defined dimension. Considerable flexibility is also provided in designing lists of to be sorted cards, sort criteria, and the criteria for sort classification shift. The package also provides limited analysis capabilities as described by Grant and Berg (1948). However, as with all CATs packages raw data can be copied to the clipboard in a format acceptable for import into commonly available spreadsheets such as Excel allowing the user to design analysis routines appropriate to their needs.
Proper citation: Colorado Assessment Tests - Card Sort (RRID:SCR_007331) Copy
Center for investigators studying human health and disease, offering the opportunity to assess the causes of disease, and new treatment methods in nonhuman primate models that closely recapitulate humans. Its mission is to provide interdisciplinary programs in biomedical research on significant human health-related problems in which nonhuman primates are the models of choice.
Proper citation: California National Primate Research Center (RRID:SCR_006426) Copy
https://www.msu.edu/~brains/brains/human/index.html
A labeled three-dimensional atlas of the human brain created from MRI images. In conjunction are presented anatomically labeled stained sections that correspond to the three-dimensional MRI images. The stained sections are from a different brain than the one which was scanned for the MRI images. Also available the major anatomical features of the human hypothalamus, axial sections stained for cell bodies or for nerve fibers, at six rostro-caudal levels of the human brain stem; images and Quicktime movies. The MRI subject was a 22-year-old adult male. Differing techniques used to study the anatomy of the human brain all have their advantages and disadvantages. Magnetic resonance imaging (MRI) allows for the three-dimensional viewing of the brain and structures, precise spatial relationships and some differentiation between types of tissue, however, the image resolution is somewhat limited. Stained sections, on the other hand, offer excellent resolution and the ability to see individual nuclei (cell stain) or fiber tracts (myelin stain), however, there are often spatial distortions inherent in the staining process. The nomenclature used is from Paxinos G, and Watson C. 1998. The Rat Brain in Stereotaxic Coordinates, 4th ed. Academic Press. San Diego, CA. 256 pp
Proper citation: Human Brain Atlas (RRID:SCR_006131) Copy
http://wiki.c2b2.columbia.edu/califanolab/index.php/BCellInteractome.htm
A network of protein-protein, protein-DNA and modulatory interactions in human B cells. The network contains known interactions (reported in public databases) and predicted interactions by a Bayesian evidence integration framework which integrates a variety of generic and context specific experimental clues about protein-protein and protein-DNA interactions with inferences from different reverse engineering algorithms, such as GeneWays and ARACNE. Modulatory interactions are predicted by the MINDY, an algorithm for the prediction of modulators of transcriptional interactions (please refer to the publication section for more information). The BCI can be downloaded as one tab delimited file containing the complete network (BCI.txt) with each type of interaction explicitly defined.
Proper citation: B Cell Interactome (RRID:SCR_008655) Copy
http://www.uv.es/vista/vistavalencia/
The general goal is to achieve a deeper understanding of natural image statistics because from this knowledge it should be possible to explain the behavior of the visual cortex and propose new alternatives in a number of applications in image processing and computer vision in which the basic problem is the choice of an appropriate signal representation. The range of basic and applied topics in which we are currently working include: * Mathematical models of human vision * Statistical image models * Image distortion metrics * Image coding * Motion estimation * Video coding * Image restoration * Color representation
Proper citation: Visual Statistics Group (RRID:SCR_008317) Copy
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
Unbiased standard magnetic resonance imaging template brain volume for normal population. These volumes were created using data from ICBM project. 6 different templates are available: * ICBM 2009a Nonlinear Symmetric - template which includes T1w,T2w,PDw modalities, also T2 relaxometry (T2 values calculated for each subject using single dual echo PD/T2 scan), and tissue probabilities maps. Also included lobe atlas used for ANIMAL+INSECT segmentation, brain mask, eye mask and face mask. Intensity inhomogeneity was performed using N3 version 1.10.1. * ICBM 2009a Nonlinear Asymmetric template - template which includes T1w,T2w,PDw modalities, and tissue probabilities maps. Intensity inhomogeneity was performed using N3 version 1.10.1. Also included brain mask, eye mask and face mask. * ICBM 2009b Nonlinear Symmetric - template which includes only T1w,T2w and PDw modalities. * ICBM 2009b Nonlinear Asymmetric - template which includes only T1w,T2w and PDw modalities. * ICBM 2009c Nonlinear Symmetric - template which includes T1w,T2w,PDw modalities, and tissue probabilities maps. Also included lobe atlas used for ANIMAL+INSECT segmentation, brain mask, eye mask and face mask. Intensity inhomogeneity was performed using N3 version 1.11. Sampling is different from 2009a template. * ICBM 2009c Nonlinear Asymmetric template - template which includes T1w,T2w,PDw modalities, and tissue probabilities maps. Intensity inhomogeneity was performed using N3 version 1.11 Also included brain mask, eye mask and face mask.Sampling is different from 2009a template. All templates are describing the same anatomy, but sampling is different. Also, different versions of N3 algorithm produces slightly different tissue probability maps. Tools for using these atlases can be found in the Software section. Viewing the multiple atlas volumes online requires Java browser support. You may also download the templates - see licensing information.
Proper citation: ICBM 152 Nonlinear atlases version 2009 (RRID:SCR_008796) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.