Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 7 showing 121 ~ 140 out of 629 results
Snippet view Table view Download 629 Result(s)
Click the to add this resource to a Collection

http://jaxmice.jax.org/list/ra1642.html

Produce new neurological mouse models that could serve as experimental models for the exploration of basic neurobiological mechanisms and diseases. The impetus for the program resulted from the recognition that: * The value of genomic data would remain limited unless more information about the functionality of its individual components became available. * The task of linking genes to specific behavior would best be accomplished by employing a combination of different approaches. In an effort to complement already existing programs, the Neuroscience Mutagenesis Facility decided to use: a random, genome-wide approach to mutagenesis, i.e.N-ethyl-N-nitrosourea (ENU) as the mutagen; a three-generation back-cross breeding scheme to focus on the detection of recessive mutations; behavioral screens selective for the detection of phenotypes deemed useful for the program goals. The resulting mutant mouse lines have been available to the scientific community for the last five years and over 700 NMF mice have been sent to interested investigators for research; these mutant mouse lines will remain available as frozen embryos (which can be re-derived on request) and can be ordered through the JAX customer service at 1-800-422-6423 (or 207-288-5845). The results of the work of the Neuroscience Mutagenesis Facility and that of two other neurogenesis centers, i.e. The Neurogenomics Project at Northwestern University, and the Neuromutagenesis Project of the Tennessee Mouse Genome Consortium, can also be seen at Neuromice.org, a common web site of these three research centers; in addition, information about all mutants produced by these groups has been recorded in MGI.

Proper citation: JAX Neuroscience Mutagenesis Facility (RRID:SCR_007437) Copy   


  • RRID:SCR_001475

    This resource has 1+ mentions.

http://type1diabetes.jax.org/

International repository for importation, curation, genotypic and phenotypic validation, cryopreservation, and distribution of mouse stocks of value to the type 1 diabetes scientific community holding over 250 genetically modified or congenic mouse stocks that are being used to dissect genetic and biologic features of T1D. They provide extensive genotypic and phenotypic quality control and genetic stabilization for these strains, as well as incidence studies when available. An added value of T1DR stocks is their ability to propel advances in related areas of science, including research in non-T1D autoimmunity and infectious diseases. The staff provides information and technical assistance regarding selection and use of existing T1DR models, and will provide limited support for development of new models considered to be of high-value for the T1D community. The resource includes strains generated at the Jackson Laboratory as well as strains donated by external scientists. Investigators are highly encouraged to donate a strain to ensure its preservation and availability to other researchers.

Proper citation: Type 1 Diabetes Resource (RRID:SCR_001475) Copy   


http://www.findmice.org/index.jsp

Database of mouse strains and stocks available worldwide, that will assist international research community in finding mouse resources they need, including inbred, mutant, and genetically engineered mice. IMSR is multi institutional international collaboration supporting use of mouse as model system for studying human biology and disease. IMSR began with initial collaboration between Mouse Genome Informatics (MGI) group at Jackson Laboratory and Medical Research Council Mammalian Genetics Unit at Harwell. Additional institutions and collaborators are now contributing mouse resource information to IMSR. Data content found in IMSR is as it was supplied by data provider sites. You are encouraged to participate in making this database as complete as possible for all worldwide mouse strain resources. If you or your institution hold mice, cryopreserved gametes or embryos, or ES cell lines that you distribute to other researchers, contributing information about them to IMSR catalog will make them more widely known.

Proper citation: International Mouse Strain Resource (RRID:SCR_001526) Copy   


http://www.gudmap.org

Project aggregates and provides experimental gene expression data from genito-urinary system. International consortium providing molecular atlas of gene expression for developing organs of GenitoUrinary (GU) tract. Mouse strains to facilitate developmental and functional studies within GU system. Experimental protocols and standard specifications. Tutorials describing GU organogenesis and primary data via database. Data are from large-scale in situ hybridization screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of developing mouse genitourinary (GU) system.

Proper citation: GenitoUrinary Development Molecular Anatomy Project (RRID:SCR_001554) Copy   


https://bdsc.indiana.edu/

Collects, maintains and distributes Drosophila melanogaster strains for research. Emphasis is placed on genetic tools that are useful to a broad range of investigations. These include basic stocks of flies used in genetic analysis such as marker, balancer, mapping, and transposon-tagging strains; mutant alleles of identified genes, including a large set of transposable element insertion alleles; defined sets of deficiencies and a variety of other chromosomal aberrations; engineered lines for somatic and germline clonal analysis; GAL4 and UAS lines for targeted gene expression; enhancer trap and lacZ-reporter strains with defined expression patterns for marking tissues; and a collection of transposon-induced lethal mutations.

Proper citation: Bloomington Drosophila Stock Center (RRID:SCR_006457) Copy   


https://ncma.bigelow.org/

National marine phytoplankton collection, maintaining over 2700 strains from around the world, most are marine phytoplankton but they also have benthic, macrophytic, freshwater and heterotrophic organisms - now incorporating bacteria and viruses. Strain records have (when available): * collection and isolation information * culturing medium recipes and growth conditions * photographs * GenBank accession link * collection site map * link to the taxonomic database Micro*scope The deposition of new strains are welcome if the strains are a valuable addition to the collection. Examples include strains that are referred to in publications, contain interesting molecular, biochemical or physiological properties, are the basis for taxonomic descriptions, are important for aquaculture, or are from an unusual geographical location or ecological habitat. The NCMA offers a course in phytoplankton culturing techniques and facilities for visiting scientists are available at the new laboratories in East Boothbay, Maine. Services include: Mass Culturing DNA and RNA, Purification, Private Holdings, Culture Techniques Course, Visiting Scientists, Single Cell Genomics, Flow Cytometry, Corporate Alliances and Technology Transfer.

Proper citation: National Center for Marine Algae and Microbiota (RRID:SCR_002120) Copy   


  • RRID:SCR_002264

    This resource has 10+ mentions.

https://ostr.ccr.cancer.gov/resources/provider_details/nci-mouse-repository

The NCI Mouse Repository cryoarchives and distributes strains of genetically engineered mice that are of immediate interest to the cancer research community. These are either gene-targeted or transgenic mice that display a cancer-related phenotype, or tool strains (e.g., cre transgenics) that can be used to develop new cancer models. You do not have to be a member of the NCI Mouse Repository or a recipient of NCI funding to have your mouse model distributed through the NCI Mouse Repository. NCI Mouse Repository strains are maintained as live colonies or cryoarchived as frozen embryos, depending on demand. Up to three breeder pairs may be ordered from live colonies. Cryoarchived strains are supplied as frozen embryos or recovery of live mice by the NCI Mouse Repository may be requested.

Proper citation: NCI Mouse Repository (RRID:SCR_002264) Copy   


  • RRID:SCR_008919

    This resource has 1+ mentions.

http://crezoo.crt-dresden.de/crezoo/

Database of helpful set of CreERT2 driver lines expressing in various regions of the developing and adult zebrafish. The lines have been generated via the insertion of a mCherry-T2A-CreERT2 in a gene trap approach or by using promoter fragments driving CreERT2. You can search the list of all transgenic lines or single entries by insertions (gene) or expression patterns (anatomy/region). In most cases the CreERT2 expression profile using in situ hybridization at 24 hpf and 48 hpf is shown, but also additional information (e.g. mCherry or CreERT2 expression at adult stages, transactivation of a Cre-dependent reporter line) is displayed. Currently, not all insertions have been mapped to a genomic location but the database will be regularly updated adding newly generated insertions and mapping information. Your help in improving and broadening the database by giving your opinion or knowledge of expression patterns is highly appreciated.

Proper citation: CreZoo (RRID:SCR_008919) Copy   


  • RRID:SCR_013279

    This resource has 1+ mentions.

http://www.tcd.ie/IMM/trinity-biobank/index.php

The Trinity Biobank was established in 2005 to serve the needs of researchers in the area of genetic epidemiology, population genetics and pharmacogenomics. Its services are available to researchers not only in Trinity College but to other institutions at home and abroad. We provide an automated DNA extraction service purifying large volumes blood (up to 10mL whole blood) and tissue DNA for archival and other purposes. In addition it makes available purified DNA and associated GWAS data from 2000 healthy donors for research use. A key requirement for reliable downstream use of DNA is purity and strand size. The quality of DNA in blood and tissue deteriorates upon storage without purification even at -80 degrees C. We ensure rapid turnaround of biological samples through automated extraction using the Qiagen Autopure system based on optimized ''salting out'' chemistry. The purified DNA sample may then be stored safely at -20 degrees C without deterioration thus freeing up valuable -80 degree C freezer space and the associated capital and maintenance cost as well as security and lab space provision. Automated DNA extraction is particularly suitable for high-throughput sample processing called for in epidemiological studies or simply for clearing sample inventory backlogs. The Trinity Biobank distributes control DNA to researchers as part of its remit to enhance the level of research activity and to synergize molecular medicine research nationally and internationally. The buffy coat collection has been made possible with the cooperation of the Irish Blood Transfusion Service (IBTS). An important requirement to access the collection is that the use of the samples relates only to ethically-approved research and to specifically-nominated research projects. The DNA collection consists of high quality human genomic DNA. Each of the available 2,000 samples is from a single individual and each sample comes with the age and gender data of the donor. The buffy coat sample is derived from the total white cell compliment (50mL buffy coat) of a blood donation (c 400mL). We will endeavor to fulfill samples number requests based on age and gender as best as possible. This collection has also been genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0, featuring 1.8 million genetic markers, including more than 906,600 single nucleotide polymorphisms (SNPs) and more than 946,000 probes for the detection of copy number variation (CNV). The DNA comes available as a 100ng/uL in 100uL of TE Buffer, ie in 10ug amounts in a separate screw-cap ampoule. The ampoules are shipped in 100-tube boxes (Sarstedt). Corresponding plasma (ACD) is also available on request. Genotype data is supplied in PLINK binary PED files format (http://pngu.mgh.harvard.edu/~purcell/plink/ ).

Proper citation: Trinity Biobank (RRID:SCR_013279) Copy   


  • RRID:SCR_013085

http://www.ohsu.edu/xd/education/schools/school-of-medicine/departments/clinical-departments/pathology/research/oregon-brain-bank.cfm

Brain bank that harvests, banks and disperses postmortem tissue for use in brain and medical research. It also provides neuropathologic diagnoses of organic dementia in a cohort of NIH sponsored research subjects. The bank includes tissue primarily from patients with Alzheimer's but also includes Huntington's, Parkinson's, and other disorders.

Proper citation: Oregon Brain Bank (RRID:SCR_013085) Copy   


  • RRID:SCR_007973

    This resource has 100+ mentions.

http://enhancer.lbl.gov/

Resource for experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. Central public database of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to particular tissue, or download entire collections of enhancers with defined tissue specificity or conservation depth.

Proper citation: VISTA Enhancer Browser (RRID:SCR_007973) Copy   


  • RRID:SCR_005664

http://ki.se/ki/jsp/polopoly.jsp?d=29354&a=31610&l=en

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 29, 2016. KI Biobank - Gallstone aims at investigating genetics of gallstone disease on Swedish Twins. Types of samples * EDTA whole blood * DNA * Plasma Number of sample donors: 82

Proper citation: KI Biobank (RRID:SCR_005664) Copy   


https://pb.apf.edu.au/phenbank/homePage.html

The NHMRC Australian PhenomeBank (APB) is a non-profit repository of mouse strains used in Medical Research. The database allows you to search for murine strains, housed or archived in Australia, carrying mutations in particular genes, strains with transgenic alterations and for mice with particular phenotypes. 1876 publicly available strains, 922 genes, 439 transgenes The APB has two roles: Provide and maintain a central database of genetically modified mice held in Australia either live or as cryopreserved material; Establish and maintain a mouse strain archive. Strains are archived as cryopreserved sperm or embryos.

Proper citation: NHMRC Australian PhenomeBank (RRID:SCR_006149) Copy   


https://www.mdanderson.org/research/departments-labs-institutes/programs-centers/michale-e-keeling-center-for-comparative-medicine-and-research/national-center-for-chimpanzee-care.html

One of only four NCRR-supported centers with the capability to conduct biomedical research in the chimpanzee, it offers chimpanzee-derived cell lines, antibodies and other biological materials, along with a registry of biologic reagents that are known to work in the chimpanzee. The Resource and Management Core is responsible for providing animal resources, tissues/biological fluids, cell lines, expert advice and research support to NIH extramural and intramural programs, other federal agencies and private sponsors. The Resource-Related Research Core conducts research to improve the health of the animals maintained, with special emphasis on studies that will enhance the usefulness of the chimpanzee as a model for studies of human disease. Resource-related research will focus on characterization of the immune system of the chimpanzee, expansion of our understanding of chimpanzee cardiomyopathy as a potential human disease model and comparisons of the physiologic and immunological consequences of research manipulations on chimpanzees trained to voluntarily cooperate with research procedures. By expanding the resources available, conducting resource-related research and containing costs, the CBRR will continue to provide a critically important, highly specialized research resource to address important human health issues.

Proper citation: Chimpanzee Biomedical Research Resource (RRID:SCR_006289) Copy   


http://www.braintumourbank.ca/pages/about.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. The mission of the Canadian Virtual Brain Tumour Bank (CVBTB) is to facilitate clinical, molecular and translational research through the provision of well-characterized tissue linked to clinical data and to become a standardized national tissue resource whereby scientific needs are met, addressed and accelerated through a common public accessible core the CVBTB. Recognizing the need to encourage systemic banking of brain tumor tissues throughout the country and to link banks of brain tumor tissue samples with academic and scientific institutions that require these samples, the CVBTB was established. Under the sponsorship of Schering Plough Canada Inc. and in association with the Canadian Brain Tumour Consortium (CBTC), the CVBTB looks to act as a resource for all researchers to provide them with information on the types of brain tumor tissue samples available and to direct them to the tumor tissue banking sites holding these samples. The CVBTB also looks to provide information on standard operating procedures regarding aspects of tumor tissue banking such as tissue accrual, storage and shipment and the processing of blood samples such as serum and lymphocytes. The CVBTB currently consists of four brain tumour tissue banking sites (Toronto Western Hospital - Toronto, Ontario; London Health Sciences Centre - London, Ontario; McGill University - Montreal, Quebec; University of Calgary - Calgary, Alberta) and is continuously looking for more institutions to be a part of the CVBTB. If your institution would like to become a part of the CVBTB, please contact the CVBTB coordinator.

Proper citation: Canadian Virtual Brain Tumour Bank (RRID:SCR_004221) Copy   


http://www.essentialtremor.us/

Finding a cure for any neurological disorder begins with the scientific study of the disorder''s causes, processes, and development in the brain. For essential tremor (ET), rigorous study of this kind had not been undertaken until 2003, when the Essential Tremor Centralized Brain Repository (ETCBR) was established at Columbia University. For the past five years, brain tissue from ET donors has been collected, processed and compared alongside age-matched control brains at the ETCBR, and already several significant findings have been made. However, there is still much to learn and a severe shortage of ET brains for scientific study. If you have been diagnosed with essential tremor, donating your brain tissue in the hours immediately after your death is of utmost importance in providing crucial information about what causes ET. Direct analysis of the shape and number of nerve cells and their content will provide medical researchers with the information they need in order to understand this complex illness. By advancing our medical knowledge of ET, the gift of brain tissue is a central piece of the puzzle in the search to develop better treatments and find a cure.

Proper citation: Essential Tremor Centralized Brain Repository (RRID:SCR_004464) Copy   


http://www.mscenter.org/research/tissue-bank/

Scientists throughout the world depend on the Rocky Mountain MS Center Tissue Bank to supply high quality human brain tissue and cerebral spinal fluid to support their research. Funded in part by the National MS Society, the Tissue Bank is one of only four MS-related tissue banks in the nation. The Tissue Bank has distributed specimens to more than 160 investigators worldwide and over 1,600 people have consented to be donors after death. Tissue banks provide a unique bridge between those who live with MS and the scientific community. Studies conducted with samples from the Center have led to several important discoveries and 130 publications. While deeply personal, the decision to donate has far-reaching effects as scientists unlock the mysteries of multiple sclerosis. If you would like to donate, arrangements must be made in advance because it is important that tissue is taken within a few hours of death. For more information on making a donation, visit the How To Donate section of this website and contact the Rocky Mountain MS Center Tissue Bank at 303.788.4030 x111.

Proper citation: Rocky Mountain MS Center Tissue Bank (RRID:SCR_004361) Copy   


http://www.tbregistry.org/

A non-profit organization that promotes research on hearing and balance disorders. The Registry database allows researchers to perform simple searches to locate specimens of interest. The results show the laboratories where specimens that match the query are located. Investigators should contact the individual laboratories for studying the specimens or for access to the sections. The Registry also serves the public and the scientific community through the dissemination of public information on temporal bone donation and research, enrollment of temporal bone donors, publication of The Registry, a newsletter for researchers, conservation of existing human temporal bone collections, and professional educational activities for physicians and scientists.

Proper citation: National Temporal Bone Pathology Resource Registry (RRID:SCR_004705) Copy   


https://www.bannerhealth.com/research/locations/sun-health-institute/programs/body-donation

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. An autopsy-based, research-devoted brain bank, biobank and biospecimen bank that derives its human donors from the Arizona Study of Aging and Neurodegenerative Disease (AZSAND), a longitudinal clinicopathological study of the health and diseases of elderly volunteers living in Maricopa county and metropolitan Phoenix, Arizona. Their function is studied during life and their organs and tissue after death. To date, they have concentrated their studies on Alzheimer's disease, Parkinson's disease, heart disease and cancer. They share the banked tissue, biomaterials and biospecimens with qualified researchers worldwide. Registrants with suitable scientific credentials will be allowed access to a database of available tissue linked to relevant clinical information, and will allow tissue requests to be initiated., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Brain and Body Donation Program (RRID:SCR_004822) Copy   


  • RRID:SCR_004723

http://www.tbidx.net

Network evaluating consensus-based common data elements (CDE) for traumatic brain injury (TBI) and psychological health (TBI-CDE, www.commondataelements.ninds.nih.gov/TBI.aspx) while extensively phenotyping a cohort of TBI patients across the injury spectrum from concussion to coma. Institutions that participate in the TBI Network will be able to track the outcomes of patients through a 3, 6 and 12-month followup program and compare outcomes with other participating institutions. For the three acute care centers, patients were enrolled that presented to the emergency department within 24 hours of head injury and required computed tomography (CT). For the rehabilitation center, referrals from acute hospitals were enrolled. Patients were consented to participate in components: clinical profile; blood draws for measurement of proteomic and genomic markers; 3T MRI within 2 weeks; three-month Glasgow Outcome Scale-Extended (GOS-E); and six-month TBI-CDE Core outcome assessments. A web-enabled database, imaging repository, and biospecimen bank was developed using the TBI-CDE recommendations. A total of 605 patients were enrolled. Of these subjects, 88% had a GCS 13-15, 5% had a GCS 9-12, and 7% had a GCS of 8 or less. Three-month GOS-E''s were obtained for 78% of the patients. Comprehensive 6-month outcome measures, including PTSD assessment, are ongoing until September 2011. Blood specimens were collected from 450 patients. Initial CTs for 605 patients and 235 patients with 3T MRI studies were transferred to an imaging repository. The TRACK TBI Network will provide qualified institutions access to a web-based version of key forms in tracking TBI outcomes for Quality Improvement and institutional benchmarking.

Proper citation: TRACK TBI Network (RRID:SCR_004723) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X