SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.aids.gov/podcast/podcast-gallery/
Podcasts from AIDS.gov, featuring information from the Federal government about HIV/AIDS prevention, testing, research, treatment, and using new media in response to HIV/AIDS. Categories include: Basic HIV information, New Media, Federal Programs and Policies, HIV/AIDS Awareness Days, and Real Stories.
Proper citation: AIDS.gov Podcast (RRID:SCR_006750) Copy
http://www.dkfz.de/en/mga/Groups/LIFEdb-Database.html
Database that integrates large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. LifeDB integrates data regarding full length cDNA clones and data on expression of encoded protein and their subcellular localization on mammalian cell line. LifeDB enables the scientific community to systematically search and select genes, proteins as well as cDNA of interest by specific database identifiers as well as gene name. It enables to visualize cDNA clone and subcellular location of proteins. It also links the results to external biological databases in order to provide a broader functional information. LifeDB also provides an annotation pipeline which facilitates an improved mapping of clones to known human reference transcripts from the RefSeq database and the Ensembl database. An advanced web interface enables the researchers to view the data in a more user friendly manner. Users can search using any one of the following search options available both in Search gene and cDNA clones and Search Sub-cellular locations of human proteins: By Keyword, By gene/transcript identifier, By plate name, By clone name, By cellular location. * The Search genes and cDNA clones results include: Gene Name, Ensemble ID, Genomic Region, Clone name, Plate name, Plate position, Classification class, Synonymous SNP''s, Non- synonymous SNP''s, Number of ambiguous positions, and Alignment with reference genes. * The Search sub-cellular locations of human proteins results include: Subcellular location, Gene Name, Ensemble ID, Clone name, True localization, Images, Start tag and End tag. Every result page has an option to download result data (excluding the microscopy images). On click of ''Download results as CSV-file'' link in the result page the user will be given a choice to open or save result data in form of a CSV (Comma Separated Values) file. Later the CSV file can be easily opened using Excel or OpenOffice.
Proper citation: LifeDB (RRID:SCR_006899) Copy
http://www.genoscope.cns.fr/externe/tetraodon/
The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.
Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy
Database containing the DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented; the most up to date collation of sequence, gene, and other annotations from all databases (eg. Celera published, NCBI, Ensembl, RIKEN, UCSC) as well as unpublished data. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. The objective of this project is to generate a comprehensive description of human chromosome 7 to facilitate biological discovery, disease gene research and medical genetic applications. There are over 360 disease-associated genes or loci on chromosome 7. A major challenge ahead will be to represent chromosome alterations, variants, and polymorphisms and their related phenotypes (or lack thereof), in an accessible way. In addition to being a primary data source, this site serves as a weighing station for testing community ideas and information to produce highly curated data to be submitted to other databases such as NCBI, Ensembl, and UCSC. Therefore, any useful data submitted will be curated and shown in this database. All Chromosome 7 genomic clones (cosmids, BACs, YACs) listed in GBrowser and in other data tables are freely distributed.
Proper citation: Chromosome 7 Annotation Project (RRID:SCR_007134) Copy
http://www.visionnetwork.nei.nih.gov/
The National Eye Institute (NEI) created the VISION Public Information Network for the purpose of communicating with public information officers at NEI grantee institutions. The Network''s primary mission is to work with the NEI in disseminating research results to the national and local media. The Network also works to inform the public of the mission of the National Institutes of Health (NIH) to improve the health of America through medical research. The NEI is part of the NIH, U.S. Department of Health and Human Services (DHHS). General information portal for eye and vision related resources for the public. Sponsors: This resource is supported by the National Eye Institute.
Proper citation: Vision Public Information Network (RRID:SCR_007340) Copy
http://nsr.bioeng.washington.edu/
Database of physiological, pharmacological, and pathological information on humans and other organisms and integration through computational modeling. Models include everything from diagrammatic schema, suggesting relationships among elements composing a system, to fully quantitative, computational models describing the behavior of physiological systems and an organism''s response to environmental change. Each mathematical model is an internally self-consistent summary of available information, and thereby defines a working hypothesis about how a system operates. Predictions from such models are subject to test, with new results leading to new models.BR /> A Tool developed for the NSR Physiome project is JSim, an open source, free software. JSim is a Java-based simulation system for building quantitative numeric models and analyzing them with respect to experimental reference data. JSim''s primary focus is in physiology and biomedicine, however its computational engine is quite general and applicable to a wide range of scientific domains. JSim models may intermix ODEs, PDEs, implicit equations, integrals, summations, discrete events and procedural code as appropriate. JSim''s model compiler can automatically insert conversion factors for compatible physical units as well as detect and reject unit unbalanced equations. JSim also imports the SBML and CellML model archival formats. All JSim models are open source. Goals of the Physiome Project: - To develop and database observations of physiological phenomenon and interpret these in terms of mechanism (a fundamentally reductionist goal). - To integrate experimental information into quantitative descriptions of the functioning of humans and other organisms (modern integrative biology glued together via modeling). - To disseminate experimental data and integrative models for teaching and research. - To foster collaboration amongst investigators worldwide, to speed up the discovery of how biological systems work. - To determine the most effective targets (molecules or systems) for therapy, either pharmaceutic or genomic. - To provide information for the design of tissue-engineered, biocompatible implants.
Proper citation: NSR Physiome Project (RRID:SCR_007379) Copy
https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page
A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.
Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy
Project focused on cerebral aneurysms and provides integrated decision support system to assess risk of aneurysm rupture in patients and to optimize their treatments. IT infrastructure has been developeded for management and processing of vast amount of heterogeneous data acquired during diagnosis.
Proper citation: aneurIST (RRID:SCR_007427) Copy
http://human.brain-map.org/static/brainexplorer
Multi modal atlas of human brain that integrates anatomic and genomic information, coupled with suite of visualization and mining tools to create open public resource for brain researchers and other scientists. Data include magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), histology and gene expression data derived from both microarray and in situ hybridization (ISH) approaches. Brain Explorer 2 is desktop software application for viewing human brain anatomy and gene expression data in 3D.
Proper citation: Allen Human Brain Atlas (RRID:SCR_007416) Copy
An interdisciplinary group of scientists and clinicians who study the human brain using a variety of imaging, recording, and computational techniques. Their primary goal is to bridge non-invasive imaging technologies to the underlying neurophysiology of brain neuronal circuits for a better understanding of healthy human brain function, and mechanisms of disruption of this function in diseases such as Alzheimer's, epilepsy and stroke. The other goal of the MMIL is to develop and apply advanced imaging techniques to understanding the human brain and its disorders. In order to ground these methodological developments in their underlying neurobiology, invasive studies in humans and animals involving optical and micro physiological measures are also performed. These methodologies are applied to understanding normal function in sleep, memory and language, development and aging, and diseases such as dementia, epilepsy and autism.
Proper citation: Multimodal Imaging Laboratory (RRID:SCR_008071) Copy
Resource for experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. Central public database of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to particular tissue, or download entire collections of enhancers with defined tissue specificity or conservation depth.
Proper citation: VISTA Enhancer Browser (RRID:SCR_007973) Copy
http://genome.wustl.edu/projects/detail/human-gut-microbiome/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2022. Human Gut Microbiome Initiative (HGMI) seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota. Humans are supra-organisms, composed of 10 times more microbial cells than human cells. Therefore, it seems appropriate to consider ourselves as a composite of many species - human, bacterial, and archaeal - and our genome as an amalgamation of human genes and the genes in ''our'' microbial genomes (''microbiome''). In the same sense, our metabolome can be considered to be a synthesis of co-evolved human and microbial traits. The total number of genes present in the human microbiome likely exceeds the number of our H. sapiens genes by orders of magnitude. Thus, without an understanding of our microbiota and microbiome, it not possible to obtain a complete picture of our genetic diversity and of our normal physiology. Our intestine is home to our largest collections of microbes: bacterial densities in the colon (up to 1 trillion cells/ml of luminal contents) are the highest recorded for any known ecosystem. The vast majority of phylogenetic types in the distal gut microbiota belong to just two divisions (phyla) of the domain Bacteria - the Bacteroidetes and the Firmicutes. Members of eight other divisions have also been identified using culture-independent 16S rRNA gene-based surveys. Metagenomic studies of complex microbial communities residing in our various body habitats are limited by the availability of suitable reference genomes for confident assignment of short sequence reads generated by highly parallel DNA sequencers, and by knowledge of the professions (niches) of community members. Therefore, HGMI, which represents a collaboration between Washington University''s Genome Center and its Center for Genome Sciences, seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota.
Proper citation: Human Gut Microbiome Initiative (RRID:SCR_008137) Copy
Central repository for high quality frequently updated manual annotation of vertebrate finished genome sequence. Human, mouse and zebrafish are in the process of being completely annotated, whereas for other species the annotation is only of specific genomic regions of particular biological interest. The majority of the annotation is from the HAVANA group at the Welcome Trust Sanger Institute. Users can BLAST, search for specific text, export, and download data. Genomes and details of the projects for each species are available through the homepages for human mouse and zebrafish. The website is built upon code from the EnsEMBL (http://www.ensembl.org) project. Some Ensembl features are not available in Vega. From the users point of view perhaps the most significant of these is MartView. However due to their inclusion in Ensembl, Vega human and mouse data can be queried using Ensembl MartView. Vega contains annotation of the human MHC region in eight haplotypes, and the LRC region in three haplotypes. Vega also contains annotation on the Insulin Dependent Diabetes (IDD) regions on non-reference assemblies for mouse.
Proper citation: VEGA (RRID:SCR_007907) Copy
http://www.gene-regulation.com/pub/databases.html
In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.
Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy
http://psychiatry.ucsd.edu/Neuroembryologylab/index.htm
Dr. Eric Turner''s laboratory studies the mechanisms underlying the development of the nervous system. The vertebrate brain is comprised of a tremendous variety of neurons, each class exhibiting a unique phenotype characterized by the expression of specific neurotransmitter receptors, ion channels, patterns of axonal growth, and synapse formation. The research we conduct focuses on the critical role transcription factors play in the specification of neuronal cell type during development. We are particularly interested in transcription factors of the homeodomain family that bind to DNA and in doing so activate or repress gene expression. One area of study is the role of POU-domain transciption factor Brn3a in axon growth and survival. The primary research areas are: * Neuronal cell fate determination: The expression of regulatory genes is manipulated in living chick embryos using microsurgery and electroporation and the effects on neural marker genes studied. * Molecular mechanisms of gene regulation: Target DNA binding sites of neural transcription factors are biochemically characterized and findings coordinated with sequence data from the mouse and human genomes. * Targeted misexpression of regulatory genes: Transgenic and knockout mouse technology is used to misexpress genes of interest, and the effects on neural marker genes, axonal growth, and cell survival studied. * Global analysis of neural gene expression: Micro-arrays (GeneChips) are employed in conjunction with other areas of study to understand the coordinated regulation of gene expression in the nervous system. Dr. Turner is a member of the University of California, San Diego''s Graduate Program in Neuroscience and Biomedical Sciences Program and accepts students from these two programs. Interesting rotation projects are available using methods ranging from biochemistry and molecular biology to embryology. Additionally, Dr. Turner is also the Director of this NIMH-funded training program for research-oriented psychiatrists, psychologists, and basic neuroscientists working in areas relevant to psychiatry. Typically Fellows spend two years in the program, during which they develop a research project under the close supervision of one of the highly productive members of the UCSD Department of Psychiatry, or another investigator in the La Jolla (UCSD/Salk/Scripps) research community.
Proper citation: Department of Psychiatry, Turner Laboratory (RRID:SCR_008067) Copy
http://www.utsa.edu/claibornelab/
The long-term goals of my research are to understand the relationship between neuronal structure and function, and to elucidate the factors that affect neuronal morphology and function over the lifespan of the mammal. Currently we are examining 1) the effects of synaptic activity on neuronal development; 2) the effects of estrogen on neuronal morphology and on learning and memory; and, 3) the effects of aging on neuronal structure and function. We have focused our efforts on single neurons in the hippocampal formation, a region that is critical for certain forms of learning and memory in rodents and humans. From the portal, you may click on a cell in your region of interest to see the complete database of cells from that region. You may also explore the Neuron Database: * Comparative Electrotonic Analysis of Three Classes of Rat Hippocampal Neurons. (Raw data available) * Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. * Dendritic Growth and Regression in Rat Dentate Granule Cells During Late Postnatal Development.(Raw data available) * A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus.
Proper citation: University of Texas at San Antonio Laboratory of Professor Brenda Claiborne (RRID:SCR_008064) Copy
http://www.osc.riken.jp/english/
Omics Science Center is aiming to develop a comprehensive system called Life Science Accelerator(LSA) for the advancement of omics research. The LSA is a comprehensive system consists of biological resources, human resources, technologies, know-how, and essential administrative ability. Ultimate goal of LSA is to support and accelerate the advancement in life science research. Omics is the comprehensive study of molecules in living organisms. The complete sequencing of genomes (the complete set of genes in an organism) has enabled rapid developments in the collection and analysis of various types of comprehensive molecular data such as transcriptomes (the complete set of gene expression data) and proteomes (the complete set of intracellular proteins). Fundamental omics research aims to link these omics data to molecular networks and pathways in order to advance the understanding of biological phenomena as systems at the molecular level.
Proper citation: RIKEN Omics Science Center (RRID:SCR_008241) Copy
http://www.liden.cc/Visionary/
It is a dictionary for terminology used in the study of human and animal vision. It includes terms from the areas of biological and machine vision, visual psychophysics, visual neuroscience and other related fields. Sponsors: Visionary is sponsored by Educational Software for Autism.
Proper citation: Visionary: A Dictionary for the Study of Vision (RRID:SCR_008307) Copy
http://www.hopkins-hivguide.org/
Launched in 2004, the HIV Guide is a single disease resource, with two main parts: the HIV database, which is accessed by searching on diagnosis, drug name, pathogen, or management or by accessing the resistance tool, and there are also browsable areas of the site, which include news, features, continuing medical education programs and other types of additional readings and information. Guides are authored by academic clinicians and subject to rigorous peer review. You may browse the guide by: Diagnosis Covering opportunistic infections, malignancies, and complications of therapy. Drugs Includes indications, dosing, drug interactions, and author recommendations. Pathogen - Describes microbiology, clinical syndromes, and therapy. Management Including antiretroviral therapy guidelines and strategies. Resistance Tool Provides up-to-date interpretation of genotypic resistance test results. Whether searching for a drug, a pathogen, a diagnosis, or a management issue, your search results will be delivered in a concise and standard form designed to give you the most clinically useful information first, with the option to go deeper if you choose. If you search by diagnosis, you will receive a page listing points covering establishment of a diagnosis, related pathogens, treatment recommendations, issues to consider on follow up, references and more. At each step, we provide you immediately with the information you need to treat the diagnosis and give you the option to read more or more deeply if you choose. On the diagnosis page, you are also provided with links to the information sheet for each drug that may be prescribed, and if you indicate which drug you intend to use, you will be provided with relevant drug selected comments. If you search by drug, you will receive a page listing FDA indications, usual adult dosing, adverse drug reactions, drug interactions, spectrum, and forms. You are also able to access full pharmacological information (mechanism, absorption, Cmax, volume of distribution, protein binding, metabolism/excretion, t _, dosing for glomerular filtration of 50-80, dosing for glomerular filtration of 10-50, dosing for glomerular filtration of <10 ml/min, dosing in hemodialysis, dosing in peritoneal dialysis, dosing in cavh, dosing for decreased hepatic function, pregnancy risk, and breast feeding compatibility). If you search by pathogen, you will receive a page covering the microbiology, clinical relevance, sites of infection, drug selected comments, other information and references. You are also provided with links to information for each drug that may be prescribed, and if you indicate which drug you intend to use, you will be provided with the drug selected comments for that choice. If you search by management, you will receive a page listing definition, indications, and clinical recommendations and additional details, including references. If you click on more wherever it appears on a page, you will find more detailed material about the topic. In addition, the HIV Guide homepage contains a Features section and Literature Review that contain synopses and articles about pertinent topics. The Publications section also provides .pdf versions of the Hopkins HIV Report. Prices represent the cost per unit specified, reflecting the Average Wholesale Price (AWP). AWP prices are taken from the Red Book, manufacturer information, and the McKesson database. These prices are updated every six months. We have listed up to 10 FDA-approved indications for uses of drugs. Though in some cases more may exist, for brevity and formatting issues authors and editors have chosen what they deem the most important. Also listed are disease states for which a drug may be likely prescribed regardless of FDA approval status (see Non-FDA approved uses). The HIV Guide is primarily focused on adult care but does cover issues of perinatal transmission. The material presented on this site represents the considered opinion of the Hopkins expert listed as the author of the module as of the date indicated. The reference section contains an annotated list of the articles that the author considers to be most relevant to the topic. Where authoritative guidelines exist, such as CDC, IDSA or Medical Letter guidelines, they are referenced and discussed along with the author''s recommendations presented.
Proper citation: HIV Guide (RRID:SCR_008252) Copy
Database of images on medical parasitology created to provide educational materials for medical students primarily, but professional workers in medical or paramedical fields may also refer to this site covering the significant parasites in the world. Each database of protozoans, nematodes, trematodes, cestodes and arthropods contains information on the morphology, life cycle, geographical distribution, symptoms, prevention, etc. Users who wish to contribute can send the editor unpublished images of human parasites (microscopical, clinical, radiological or epidemiological aspects of human parasitic infections) by mail or e-mail. Pathology specimens (slide, samples) are welcome too. The A.M.P. received the citation of reliable sources such as Parasitology today and The Lancet, and is now listed in the Internet Resources on Specific Infectious Diseases Topics of the Mandell, Douglas and Bennets Principles and Practice of Infectious Diseases Fifth Edition.
This website was established with a great contribution of the PROJECT COLLABORATORS and many contributors of The Korean Society for Parasitology.
Proper citation: Atlas of Medical Parasitology (RRID:SCR_008163) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.