Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 172 results
Snippet view Table view Download 172 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_015704

    This resource has 1+ mentions.

http://mrir.med.miami.edu:8000/midas

Software for processing, display, and analysis of magnetic resonance spectroscopic imaging data. MIDAS supports a "whole-brain" MRSI acquisition method that has been implemented on MRI systems from three major manufacturers., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: MIDAS (RRID:SCR_015704) Copy   


  • RRID:SCR_015846

    This resource has 1+ mentions.

http://www.iu.edu/~beca/

Visualization and analysis software for interactive visual exploration and mining of fiber-tracts and brain networks with their genetic determinants and functional outcomes. BECA includes an fMRI and Diseases Analysis version as well as a Genome Explorer version.

Proper citation: BECA (RRID:SCR_015846) Copy   


http://www.picsl.upenn.edu/ANTS/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. Software package designed to enable researchers with advanced tools for brain and image mapping. Many of the ANTS registration tools are diffeomorphic*, but deformation (elastic and BSpline) transformations are available. Unique components of ANTS include multivariate similarity metrics, landmark guidance, the ability to use label images to guide the mapping and both greedy and space-time optimal implementations of diffeomorphisms. The symmetric normalization (SyN) strategy is a part of the ANTS toolkit as is directly manipulated free form deformation (DMFFD). *Diffeomorphism: a differentiable map with differentiable inverse. In general, these maps are generated by integrating a time-dependent velocity field. ANTS Applications: * Gray matter morphometry based on the jacobian and/or cortical thickness. * Group and single-subject optimal templates. * Multivariate DT + T1 brain templates and group studies. * Longitudinal brain mapping -- special similarity metric options. * Neonatal and pediatric brain segmentation. * Pediatric brain mapping. * T1 brain mapping guided by tractography and connectivity. * Diffusion tensor registration based on scalar or connectivity data. * Brain mapping in the presence of lesions. * Lung and pulmonary tree registration. * User-guided hippocampus labeling, also of sub-fields. * Group studies and statistical analysis of cortical thickness, white matter volume, diffusion tensor-derived metrics such as fractional anisotropy and mean diffusion., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: ANTS - Advanced Normalization ToolS (RRID:SCR_004757) Copy   


http://pdbml.pdb.org/

Markup Language that provides a representation of PDB data in XML format. The description of this format is provided in XML schema of the PDB Exchange Data Dictionary. This schema is produced by direct translation of the mmCIF format PDB Exchange Data Dictionary Other data dictionaries used by the PDB have been electronically translated into XML/XSD schemas and these are also presented in the list below. * PDBML data files are provided in three forms: ** fully marked-up files, ** files without atom records ** files with a more space efficient encoding of atom records * Data files in PDBML format can be downloaded from the RCSB PDB website or by ftp. * Software tools for manipulating PDB data in XML format are available.

Proper citation: Protein Data Bank Markup Language (RRID:SCR_005085) Copy   


https://www.icpsr.umich.edu/icpsrweb/content/addep/index.html

Provides access to data including wide range of topics related to disability. ADDEP data can be used to better understand and inform the implementation of Americans with Disabilities Act and other disability policies.

Proper citation: Archive of Data on Disability to Enable Policy (ADDEP) (RRID:SCR_016315) Copy   


  • RRID:SCR_008274

http://www.loni.usc.edu/Software/jViewbox

A portable software framework for medical imaging research. jViewbox consists of a set of Java classes organized under a simple but extensive API that provides the core functionality of 2D image presentation needed by most imaging applications. It follows Java's Swing model closely to make it easy for application developers to build GUIs where end users can use various tools in a tool bar to manipulate the image displays. No optional add-ons or native code is used, which makes jViewBox compatible with any standard Java 2 Runtime Environment (version 1.3 or later).

Proper citation: jViewbox (RRID:SCR_008274) Copy   


  • RRID:SCR_017449

    This resource has 100+ mentions.

https://neuron.yale.edu/neuron/

Software for computational neurophysiology. Simulation environment is used for building and using computational models of neurons and networks of neurons. NEURON Users Group can participate in collaborative development of documentation, tutorials, and software.

Proper citation: NEURON (RRID:SCR_017449) Copy   


  • RRID:SCR_018467

    This resource has 1+ mentions.

http://www.nitrc.org/projects/reprocontainers/

Software containerized environments for reproducible neuroimaging. Part of ReproNim - Center for Reproducible Neuroimaging Computation. DataLad dataset with collection of popular computational tools provided within ready to use containerized environments.

Proper citation: ReproNim/containers (RRID:SCR_018467) Copy   


  • RRID:SCR_018653

https://www.bpforms.org

Software toolkit for unambiguously describing molecular structure of DNA, RNA, and proteins, including non-canonical monomeric forms, crosslinks, nicks, and circular topologies. Aims to help epigenomics, transcriptomics, proteomics, systems biology, and synthetic biology researchers share and integrate information about DNA modification, post-transcriptional modification, post-translational modification, expanded genetic codes, and synthetic parts.

Proper citation: BpForms (RRID:SCR_018653) Copy   


  • RRID:SCR_018652

https://www.objtables.org

Software toolkit for creating reusable datasets that are both human and machine readable, combining spreadsheets with schemas including classes, their attributes, type of each attribute, and possible relationships between instances of classes.Consists of format for describing schemas for spreadsheets, numerous data types for science, syntax for indicating class and attribute represented by each table and column in workbook, and software for using schemas to rigorously validate, merge, split, compare, and revision datasets. Used for supplementary materials of journal article, as well as for emerging domains which need to quickly build new formats for new types of data and associated software with minimal effort.

Proper citation: ObjTables (RRID:SCR_018652) Copy   


  • RRID:SCR_019089

    This resource has 1+ mentions.

http://datasets.datalad.org/

DataLad data distribution. Super dataset collating DataLad datasets from various sources including OpenNeuro, CRCNS, etc., to provide unified access to over 200TB of neural data.

Proper citation: datasets.datalad.org (RRID:SCR_019089) Copy   


  • RRID:SCR_005619

    This resource has 1000+ mentions.

http://slicer.org/

A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.

Proper citation: 3D Slicer (RRID:SCR_005619) Copy   


http://connectomes.utah.edu/

A web-compliant application that allows connectomics visualization by converting datasets to web-optimized tiles, delivering volume transforms to client devices, and providing groups of users with connectome annotation tools and data simultaneously via conventional internet connections. Viking is an extensible tool for connectomics analysis and is generalizable to histomics applications.

Proper citation: Viking Viewer for Connectomics (RRID:SCR_005986) Copy   


https://kimlab.io/brain-map/DevCCF/

Open access multimodal 3D atlases of developing mouse brain that can be used to integrate mouse brain imaging data for visualization, education, cell census mapping, and more. Atlas ages include E11.5, E13.5, E15.5, E18.5, P4, P14, and P56. Web platform can be utilized to visualize and explore the atlas in 3D. Downloadable atlas can be used to align multimodal mouse brain data. Morphologically averaged symmetric template brains serve as the basis reference space and coordinate system. Anatomical labels are manually drawn in 3D based on the prosomeric model. For additional references, the P56 template includes templates and annotations from the aligned Allen Mouse Brain Common Coordinate Framework (Allen CCFv3) and aligned Molecular Atlas of the Adult Mouse Brain.

Proper citation: 3D Developmental Mouse Brain Common Coordinate Framework (RRID:SCR_025544) Copy   


  • RRID:SCR_026575

    This resource has 10+ mentions.

https://github.com/Washington-University/HCPpipelines

Software package as set of tools, primarily shell scripts, for processing multi-modal, high-quality MRI images for the Human Connectome Project. Minimal preprocessing pipelines for structural, functional, and diffusion MRI that were developed by the HCP to accomplish many low level tasks, including spatial artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard space.

Proper citation: HCP Pipelines (RRID:SCR_026575) Copy   


https://github.com/ReproBrainChart

Open data resource for mapping brain development and its associations with mental health. Integrates data from 5 large studies of brain development in youth from three continents (N = 6,346). Bifactor models were used to create harmonized psychiatric phenotypes, capturing major dimensions of psychopathology. Neuroimaging data were carefully curated and processed using consistent pipelines in a reproducible manner.

Proper citation: Reproducible Brain Charts (RRID:SCR_027837) Copy   


  • RRID:SCR_000051

http://www.bioconductor.org/packages/release/bioc/html/flowBin.html

A software package to combine flow cytometry data that has been multiplexed into multiple tubes with common markers between them. It establishes common bins across tubes in terms of the common markers, then determines expression within each tube for each bin in terms of the tube-specific markers.

Proper citation: flowBin (RRID:SCR_000051) Copy   


http://www.imagwiki.nibib.nih.gov/

Special interest group that brings together program officers who have a shared interest in applying modeling and analysis methods to biomedical systems. The meetings are formatted to facilitate an open discussion of what is currently being supported, and for planning future directions in these areas. At each meeting, time is allotted to hear focused presentations from one or two participants to discuss issues relating to modeling and analysis across the government agencies. Discussions also occur online, and participants are informed of talks, conferences and other activities of interest to the group. IMAG recognized that the modeling community is on the forefront of thinking across the biological continuum, rather than just focusing at one scale or level of resolution. In addition IMAG identified a strong desire among modelers to form multi-disciplinary partnerships across varied research communities. Overall Intent of IMAG through the MSM Consortium is: * To develop new methodologies that span across biological scales * To develop multiscale methodologies applicable to biomedical, biological and behavioral research * To develop methodologies within the local multidisciplinary team and within the larger Framework environment * To further promote multiscale modeling through model sharing This wiki contains information relevant to the IMAG (Interagency Modeling and Analysis Group) and the MSM (Multi-scale Modeling Consortium).

Proper citation: Interagency Modeling and Analysis Group and Multi-scale Modeling Consortium Wiki (RRID:SCR_008046) Copy   


  • RRID:SCR_017129

    This resource has 1+ mentions.

https://www.nature.com/articles/s41467-018-03367-w

Nanodroplet processing platform for deep and quantitative proteome profiling of 10 to 100 mammalian cells. It enhances efficiency and recovery of sample processing by downscaling processing volumes.

Proper citation: nanoPOTS (RRID:SCR_017129) Copy   


  • RRID:SCR_013273

    This resource has 100+ mentions.

http://www.fz-juelich.de/ime/spm_anatomy_toolbox

A MATLAB toolbox which uses three dimensional probabilistic cytoarchitechtonic maps to correlate microscopic, anatomic and functional data of the cerebral cortex. Correlating the activation foci identified in functional imaging studies of the human brain with structural (e.g., cytoarchitectonic) information on the activated areas is a major methodological challenge for neuroscience research. We here present a new approach to make use of three-dimensional probabilistic cytoarchitectonic maps, as obtained from the analysis of human post-mortem brains, for correlating microscopical, anatomical and functional imaging data of the cerebral cortex. We introduce a new, MATLAB based toolbox for the SPM2 software package which enables the integration of probabilistic cytoarchitectonic maps and results of functional imaging studies. The toolbox includes the functionality for the construction of summary maps combining probability of several cortical areas by finding the most probable assignment of each voxel to one of these areas. Its main feature is to provide several measures defining the degree of correspondence between architectonic areas and functional foci. The software, together with the presently available probability maps, is available as open source software to the neuroimaging community. This new toolbox provides an easy-to-use tool for the integrated analysis of functional and anatomical data in a common reference space.

Proper citation: SPM Anatomy Toolbox (RRID:SCR_013273) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X