SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.bioconductor.org/packages/release/bioc/html/ggbio.html
An R package for extending the grammar of graphics for genomic data. The graphics are designed to answer common scientific questions, in particular those often asked of high throughput genomics data. All core Bioconductor data structures are supported, where appropriate. The package supports detailed views of particular genomic regions, as well as genome-wide overviews. Supported overviews include ideograms and grand linear views. High-level plots include sequence fragment length, edge-linked interval to data view, mismatch pileup, and several splicing summaries.
Proper citation: ggbio (RRID:SCR_003313) Copy
https://bitbucket.org/dranew/defuse
Software package for gene fusion discovery using RNA-Seq data. It uses clusters of discordant paired end alignments to inform a split read alignment analysis for finding fusion boundaries.
Proper citation: deFuse (RRID:SCR_003279) Copy
http://primerseq.sourceforge.net/
Software that designs RT-PCR primers that evaluate alternative splicing events by incorporating RNA-Seq data. It is particularly advantageous for designing a large number of primers for validating alternative splicing events found in RNA-Seq data. It incorporates RNA-Seq data in the design process to weight exons by their read counts. Essentially, the RNA-Seq data allows primers to be placed using actually expressed transcripts. This could be for a particular cell line or experimental condition, rather than using annotations that incorporate transcripts that are not expressed for the data. Alternatively, you can design primers that are always on constitutive exons. PrimerSeq does not limit the use of gene annotations and can be used for a wide array of species.
Proper citation: PrimerSeq (RRID:SCR_003295) Copy
http://shendurelab.github.io/MIPGEN/
Software for a fast, simple way to generate designs for MIP assays targeting hundreds or thousands of genomic loci in parallel. Packaged with MIPgen are scripts that aid in visualization of MIP designs and processing of MIP sequence reads to SAM files that can then be passed through any standard variant calling pipeline.
Proper citation: MIPgen (RRID:SCR_003325) Copy
https://bitbucket.org/johanneskoester/snakemake/wiki/
A Python based language and execution environment for make-like workflows. The system supports the use of automatically inferred multiple named wildcards (or variables) in input and output filenames.
Proper citation: Snakemake (RRID:SCR_003475) Copy
http://knowledgemap.mc.vanderbilt.edu/research/content/phewas-r-package
Software package contains methods for performing Phenome-Wide Association Study.
Proper citation: PheWAS R Package (RRID:SCR_003512) Copy
http://www.cellimagelibrary.org/
Freely accessible, public repository of vetted and annotated microscopic images, videos, and animations of cells from a variety of organisms, showcasing cell architecture, intracellular functionalities, and both normal and abnormal processes. Explore by Cell Process, Cell Component, Cell Type or Organism. The Cell includes images acquired from historical and modern collections, publications, and by recruitment.
Proper citation: Cell Image Library (CIL) (RRID:SCR_003510) Copy
https://code.google.com/p/bpipe/
Software tool for running and managing bioinformatics pipelines. It specializes in enabling users to turn existing pipelines based on shell scripts or command line tools into highly flexible, adaptable and maintainable workflows with a minimum of effort. Bpipe ensures that pipelines execute in a controlled and repeatable fashion and keeps audit trails and logs to ensure that experimental results are reproducible. Requiring only Java as a dependency, it is fully self-contained and cross-platform, making it very easy to adopt and deploy into existing environments.
Proper citation: Bpipe (RRID:SCR_003471) Copy
http://www.lgm.upmc.fr/parseq/
Statistical software for transcription landscape reconstruction at a basepair resolution from RNA Seq read counts. It is based on a state-space model which describes, in terms of abrupt shifts and more progressive drifts, the transcription level dynamics along the genome. Alongside variations of transcription level, it incorporates a component of short-range variation to pull apart local artifacts causing correlated dispersion. Reconstruction of the transcription level relies on a conditional sequential Monte Carlo approach that is combined with parameter estimation in a Markov chain Monte Carlo algorithm known as particle Gibbs. The method allows to estimate the local transcription level, to call transcribed regions, and to identify the transcript borders.
Proper citation: Parseq (RRID:SCR_003464) Copy
Centralized, standards compliant, public data repository for proteomics data, including protein and peptide identifications, post-translational modifications and supporting spectral evidence. Originally it was developed to provide a common data exchange format and repository to support proteomics literature publications. This remit has grown with PRIDE, with the hope that PRIDE will provide a reference set of tissue-based identifications for use by the community. The future development of PRIDE has become closely linked to HUPO PSI. PRIDE encourages and welcomes direct user submissions of protein and peptide identification data to be published in peer-reviewed publications. Users may Browse public datasets, use PRIDE BioMart for custom queries, or download the data directly from the FTP site. PRIDE has been developed through a collaboration of the EMBL-EBI, Ghent University in Belgium, and the University of Manchester.
Proper citation: Proteomics Identifications (PRIDE) (RRID:SCR_003411) Copy
http://cran.r-project.org/web/packages/MultiPhen/
Software package that performs genetic association tests between SNPs (one-at-a-time) and multiple phenotypes (separately or in joint model).
Proper citation: MultiPhen (RRID:SCR_003498) Copy
http://www.biostat.wisc.edu/~kendzior/EBSEQ/
Software R package for RNA-Seq Differential Expression Analysis.
Proper citation: EBSeq (RRID:SCR_003526) Copy
Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.
Proper citation: Reactome (RRID:SCR_003485) Copy
A freely available software tool available for the Windows and Linux platform, as well as the Online version Applet, for the analysis, comparison and search of digital reconstructions of neuronal morphologies. For the quantitative characterization of neuronal morphology, LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions, including: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of 20 neurons. The tool is available for either online use on any Java-enabled browser and platform or may be downloaded for local execution under Windows and Linux.
Proper citation: L-Measure (RRID:SCR_003487) Copy
https://code.google.com/p/mztab/
A Java interface to the mzTab data exchange format for reporting a summary of proteomics results.
Proper citation: jmzTab (RRID:SCR_003481) Copy
http://compbio.dfci.harvard.edu/tgi/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.The goal of The Gene Index Project is to use the available Expressed Sequence Transcript (EST) and gene sequences, along with the reference genomes wherever available, to provide an inventory of likely genes and their variants and to annotate these with information regarding the functional roles played by these genes and their products. The promise of genome projects has been a complete catalog of genes in a wide range of organisms. While genome projects have been successful in providing reference genome sequences, the problem of finding genes and their variants in genomic sequence remains an ongoing challenge. TGI has created an inventory that contains genes and their variants together with description. In addition, this resource is attempting to use these catalogs to find links between genes and pathways in different species and to provide lists of features within completed genomes that can aid in the understanding of how gene expression is regulated. DATABASES *Eukaryotic Gene Orthologues (formerly known as TOGA - TIGR Orthologous Gene Alignment): Eukaryotic Gene Orthologues (EGO) at DFGI are generated by pair-wise comparison between the Tentative Consensus (TC) sequences that comprise the Dana Farber Gene Indices from individual organisms. The reciprocal pairs of the best match were clustered into individual groups and multiple sequence alignments were displayed for each group. *GeneChip Oncology Database (GCOD):Cancer gene expression database is a collection of publicly available microarray expression data on Affymetrix GeneChip Arrays related to human cancers. Currently only datasets with available raw data (Affymetrix .CEL files) are processed. All processed datasets were subjected to extensive manual curation, uniform processing and consistent quality control. You can browse the experiments in our collection, perform statistical analysis, and download processed data; or to search gene expression profiles using Entrez gene symbol, Unigene ID, or Affymetrix probeset ID. *Gene Indices: As of July 1, 2008, there are 111 publicly available gene indices. They are separated into 4 categories for better organization and easier access. Animal: 41, Plant: 45, Protist: 15, Fungal: 10 *Genomic Maps: Human, mouse, rat, chicken, drosophila melanogaster, zebrafish, mosquito, caenorhabditis elegans, Arabidopsis thaliana, rice, yeast, fission yeast Dana-Farber Cancer Institute (DFCI) Gene Indices Software Tools: *TGI Clustering tools (TGICL): a software system for fast clustering of large EST datasets. *GICL: this package contains the scripts and all the necessary pre-compiled binaries for 32bit Linux systems. *clview: an assembly file viewer. *SeqClean:a script for automated trimming and validation of ESTs or other DNA sequences by screening for various contaminants, low quality and low-complexity sequences. *cdbfasta/cdbyank: fast indexing/retrieval of fasta records from flat file databases. *DAS/XML Genomic Viewer The Genomic viewer borrows modules from http://www.biodas.org (lstein (at) cshl.org) & http://webreference.com.
Proper citation: Gene Index Project (RRID:SCR_002148) Copy
http://www.nitrc.org/projects/voxbo
Software package for brain image manipulation and analysis, focusing on fMRI and lesion analysis. VoxBo can be used independently or in conjunction with other packages. It provides GLM-based statistical tools, an architecture for interoperability with other tools (they encourage users to incorporate SPM and FSL into their processing pipelines), an automation system, a system for parallel distributed computing, numerous stand-alone tools, decent wiki-based documentation, and lots more.
Proper citation: VoxBo (RRID:SCR_002166) Copy
Software package as distribution of ImageJ and ImageJ2 together with Java, Java3D and plugins organized into coherent menu structure. Used to assist research in life sciences.
Proper citation: Fiji (RRID:SCR_002285) Copy
http://www.pathwaycommons.org/pc
Database of publicly available pathways from multiple organisms and multiple sources represented in a common language. Pathways include biochemical reactions, complex assembly, transport and catalysis events, and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathways were downloaded directly from source databases. Each source pathway database has been created differently, some by manual extraction of pathway information from the literature and some by computational prediction. Pathway Commons provides a filtering mechanism to allow the user to view only chosen subsets of information, such as only the manually curated subset. The quality of Pathway Commons pathways is dependent on the quality of the pathways from source databases. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. It currently contains data from nine databases with over 1,668 pathways, 442,182 interactions,414 organisms and will be continually expanded and updated. (April 2013)
Proper citation: Pathway Commons (RRID:SCR_002103) Copy
Bioinformatics platform for storing, organizing, processing, and sharing genomic and other biomedical big data. Designed to make it easier for bioinformaticians to develop analyses, developers to create genomic web applications and IT administers to manage large-scale compute and storage genomic resources. Designed to run on top of cloud operating systems such as Amazon Web Services and OpenStack. Currently, there are implementations that work on AWS and Xen+Debian/Ubuntu. Functionally, Arvados has two major sets of capabilities: (a) data management and (b) compute management.
Proper citation: Arvados (RRID:SCR_002223) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.