Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 970 results
Snippet view Table view Download 970 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_016394

    This resource has 1+ mentions.

http://vensim.com/

Simulation software for improving the performance of real systems. Used for developing, analyzing, and packaging dynamic feedback models.

Proper citation: Vensim (RRID:SCR_016394) Copy   


  • RRID:SCR_016322

    This resource has 100+ mentions.

http://www.omicsbean.cn

Software tool for multi-omics data analysis that can perform complex and personalized analysis. Network regulation and molecular mechanism models can be customized according to the requirements of the users.

Proper citation: OmicsBean (RRID:SCR_016322) Copy   


  • RRID:SCR_016563

    This resource has 1+ mentions.

https://github.com/xu-lab/SINCERA

Software tool implemented in R S4 as an analytic pipeline for processing single-cell RNA-seq data from a whole organ or sorted cells. Used for Single Cell RNA-Seq profiling analysis.

Proper citation: SINCERA Pipeline (RRID:SCR_016563) Copy   


http://www.oege.org/software/hwe-mr-calc.shtml

This portal leads to the Chi-sq Hardy-Weinberg equilibrium test calculator for biallelic markers (SNPs, indels etc), including analysis for ascertainment bias for dominant/recessive models (due to biological or technical causes.) The purpose of this web program is for estimating possible missingness and an approach to evaluating missingness under different genetic models. Mendelian randomization (MR) permits causal inference between exposures and a disease. It can be compared with randomized controlled trials. Whereas in a randomized controlled trial the randomization occurs at entry into the trial, in MR the randomization occurs during gamete formation and conception. Several factors, including time since conception and sampling variation, are relevant to the interpretation of an MR test. Particularly important is consideration of the missingness of genotypes that can be originated by chance, genotyping errors, or clinical ascertainment. Testing for Hardy-Weinberg equilibrium (HWE) is a genetic approach that permits evaluation of missingness. Through this tool, the authors demonstrate evidence of nonconformity with HWE in real data. They also perform simulations to characterize the sensitivity of HWE tests to missingness. Unresolved missingness could lead to a false rejection of causality in an MR investigation of trait-disease association. These results indicate that large-scale studies, very high quality genotyping data, and detailed knowledge of the life-course genetics of the alleles/genotypes studied will largely mitigate this risk. Sponsors: This resource is supported by an Intermediate Fellowship (grant FS/05/065/19497) from the British Heart Foundation.

Proper citation: Hardy-Weinberg Equilibrium Calculator (RRID:SCR_008371) Copy   


  • RRID:SCR_017294

    This resource has 10+ mentions.

https://bellcurve.jp/ex/

Software tool for statistical analysis by BellCurve that adds statistical analysis methods to Excel menu .

Proper citation: Excel Statistics (RRID:SCR_017294) Copy   


  • RRID:SCR_006941

    This resource has 10+ mentions.

http://geneontology.org/docs/tools-overview/

Collection of tools developed by GO Consortium and by third parties. Tools are listed by category or alphabetically and continue to be improved and expanded.

Proper citation: Gene Ontology Tools (RRID:SCR_006941) Copy   


  • RRID:SCR_007109

    This resource has 10+ mentions.

http://www.bmu.psychiatry.cam.ac.uk/software/

Suite of programs developed for fMRI analysis in a Virtual Pipeline Laboratory facilitates combining program modules from different software packages into processing pipelines to create analysis solutions which are not possible with a single software package alone. Current pipelines include fMRI analysis, statistical testing based on randomization methods and fractal spectral analysis. Pipelines are continually being added. The software is mostly written in C. This fMRI analysis package supports batch processing and comprises the following general functions at the first level of individual image analysis: movement correction (interpolation and regression), time series modeling, data resampling in the wavelet domain, hypothesis testing at voxel and cluster levels. Additionally, there is code for second level analysis - group and factorial or ANOVA mapping - after co-registration of voxel statistic maps from individual images in a standard space. The main point of difference from other fMRI analysis packages is the emphasis throughout on the use of data resampling (permutation or randomization) as a basis for inference on individual, group and factorial test statistics at voxel and cluster levels of resolution.

Proper citation: Cambridge Brain Activation (RRID:SCR_007109) Copy   


  • RRID:SCR_007105

    This resource has 1000+ mentions.

http://weizhong-lab.ucsd.edu/cd-hit/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software program for clustering biological sequences with many applications in various fields such as making non-redundant databases, finding duplicates, identifying protein families, filtering sequence errors and improving sequence assembly etc. It is very fast and can handle extremely large databases. CD-HIT helps to significantly reduce the computational and manual efforts in many sequence analysis tasks and aids in understanding the data structure and correct the bias within a dataset. The CD-HIT package has CD-HIT, CD-HIT-2D, CD-HIT-EST, CD-HIT-EST-2D, CD-HIT-454, CD-HIT-PARA, PSI-CD-HIT, CD-HIT-OTU and over a dozen scripts. * CD-HIT (CD-HIT-EST) clusters similar proteins (DNAs) into clusters that meet a user-defined similarity threshold. * CD-HIT-2D (CD-HIT-EST-2D) compares 2 datasets and identifies the sequences in db2 that are similar to db1 above a threshold. * CD-HIT-454 identifies natural and artificial duplicates from pyrosequencing reads. * CD-HIT-OTU cluster rRNA tags into OTUs The usage of other programs and scripts can be found in CD-HIT user''s guide. CD-HIT was originally developed by Dr. Weizhong Li at Dr. Adam Godzik''s Lab at the Burnham Institute (now Sanford-Burnham Medical Research Institute)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: CD-HIT (RRID:SCR_007105) Copy   


https://bams1.org/

Knowledge management system designed to handle neurobiological information at different levels of organization of vertebrate nervous system. Database and repository for information about neural circuitry, storing and analyzing data concerned with nomenclature, taxonomy, axonal connections, and neuronal cell types. Handles data and metadata collated from original literature, or inserted by scientists that is associated to four levels of organization of vertebrate nervous system. Data about expressed molecules, neuron types and classes, brain regions, and networks of brain regions.

Proper citation: Brain Architecture Management System (RRID:SCR_007251) Copy   


  • RRID:SCR_008034

    This resource has 1+ mentions.

http://wwwmgs.bionet.nsc.ru/mgs/gnw/about.shtml

GeneNetWorks is designed for accumulation of experimental data, data navigation, data analysis, and analysis of dependencies in the field of gene expression regulation. It integrates the databases and programs for processing the data about structure and function of DNA, RNA, and proteins, together with the other information resources important for gene expression description. The unique property of above described system is that all the resources within the system GeneNetWorks are divided according to the natural hierarchy of molecular genetic systems and has the following levels: (1) DNA; (2) RNA; (3) proteins; and (4) gene networks. Each module contains: 1) experimental data represented as a database or some sample; 2) program for data analysis; 3) results of an automated data processing; 4) tools for the graphical representation of these data and the results of the data analyses.

Proper citation: GeneNetWorks (RRID:SCR_008034) Copy   


http://www.genomatix.de/

Genomatix is a privately held company that offers software, databases, and services aimed at understanding gene regulation at the molecular level representing a central part of systems biology. Its multilayer integrative approach is a working implementation of systems biology principles. Genomatix combines sequence analysis, functional promoter analysis, proprietary genome annotation, promoter sequence databases, comparative genomics, scientific literature data mining, pathway databases, biological network databases, pathway analysis, network analysis, and expression profiling into working solutions and pipelines. It also enables better understanding of biological mechanisms under different conditions and stimuli in the biological context of your data. Some of Genomatix'' most valuable assets are the strong scientific background and the years of experience in research & discovery as well as in development & application of scientific software. Their firsthand knowledge of all the complexities involved in the in-silico analysis of biological data makes them a first-rate partner for all scientific projects involving the evaluation of gene regulatory mechanisms. The Genomatix team has more than a decade of scientific expertise in the successful application of computer aided analysis of gene regulatory networks, which is reflected by more than 150 peer reviewed scientific publications from Genomatix'' scientists More than 35,000 researchers in industry and academia around the world use this technology. The software available in Genomatix are: - GenomatixSuite: GenomatixSuite is our comprehensive software bundle including ElDorado, Gene2Promoter, GEMS Launcher, MatInspector and MatBase. GenomatixSuite PE also includes BiblioSphere Pathway Edition. Chromatin IP Software - RegionMiner: Fast, extensive analysis of genomic regions. - ChipInspector: Discover the real power of your microarray data. Genome Annotation Software - ElDorado: Extended Genome Annotation. - Gene2Promoter: Retrieve & analyze promoters - GPD: The Genomatix Promoter Database, which is now included with Gene2Promoter. Knowledge Mining Software - BiblioSpere : The next level of pathway/genomics analysis. - LitInspector: Literature and pathway analysis for free. Sequence Analysis Software - GEMS Launcher: Our integrated collection of sequence analysis tools. - MalInspector: Search transcription factor binding sites - MatBase: The transcription factor knowledge base. Other (no registration required) Software - DiAlign: Multiple alignment of DNA/protein sequence. - Genomatix tools: Various small tools for sequence statistics, extraction, formatting, etc.

Proper citation: Genomatix Software: Understanding Gene Regulation (RRID:SCR_008036) Copy   


  • RRID:SCR_008183

    This resource has 1+ mentions.

http://genewindow.nci.nih.gov/

Software tool for pre- and post-genetic bioinformatics and analytical work, developed and used at the Core Genotyping Facility (CGF) at the National Cancer Institute. While Genewindow is implemented for the human genome and integrated with the CGF laboratory data, it stands as a useful tool to assist investigators in the selection of variants for study in vitro, or in novel genetic association studies. The Genewindow application and source code is publicly available for use in other genomes, and can be integrated with the analysis, storage, and archiving of data generated in any laboratory setting. This can assist laboratories in the choice and tracking of information related to genetic annotations, including variations and genomic positions. Features of GeneWindow include: -Intuitive representation of genomic variation using advanced web-based graphics (SVG) -Search by HUGO gene symbol, dbSNP ID, internal CGF polymorphism ID, or chromosome coordinates -Gene-centric display (only when a gene of interest is in view) oriented 5 to 3 regardless of the reference strand and adjacent genes -Two views, a Locus Overview, which varies in size depending on the gene or genomic region being viewed and, below it, a Sequence View displaying 2000 base pairs within the overview -Navigate the genome by clicking along the gene in the Locus Overview to change the Sequence View, expand or contract the genomic interval, or shift the view in the 5 or 3 direction (relative to the current gene) -Lists of available genomic features -Search for sequence matches in the Locus Overview -Genomic features are represented by shape, color and opacity with contextual information visible when the user moves over or clicks on a feature -Administrators can insert newly-discovered polymorphisms into the Genewindow database by entering annotations directly through the GUI -Integration with a Laboratory Information Management System (LIMS) or other databases is possible

Proper citation: GeneWindow (RRID:SCR_008183) Copy   


http://www.neuroscience.cam.ac.uk/

This portal provides information about the neuroscience department at the University of Cambridge. Cambridge has a strong tradition in neuroscience having been host to the first analyses of neural signaling in the 1930s, determined the mechanisms of neuronal firing in the 1950s, and heralded some of the early theoretical approaches to the functions of neural circuitry in the 1960s. Neuroscience continues to grow at Cambridge, with an impressive record of achievement in multidisciplinary research.

Proper citation: Cambridge Neuroscience Department (RRID:SCR_008649) Copy   


  • RRID:SCR_008500

    This resource has 1+ mentions.

http://grey.colorado.edu/emergent

emergent is a comprehensive, full-featured neural network simulator that allows for the creation and analysis of complex, sophisticated models of the brain in the world. With an emphasis on qualitative analysis and teaching, it also supports the workflow of professional neural network researchers. Its high level drag-and-drop programming interface, built on top of a scripting language that has full introspective access to all aspects of networks and the software itself, allows one to write programs that seamlessly weave together the training of a network and evolution of its environment without ever typing out a line of code. Networks and all of their state variables are visually inspected in 3d, allowing for a quick visual regression of network dynamics and robot behavior. This same 3d world sports a highly accurate Newtonian physics simulation, allowing you to create rich robotics simulations (for example, a car). As a direct descendant of PDP (1986) and PDP (1999), emergent has been in development for decades. In the most recent versions available strive to distill it down to its essential elements. Those that take the time to learn the best practices will be rewarded with the ability to create and understand the most complicated neural models ever published.

Proper citation: Emergent (RRID:SCR_008500) Copy   


  • RRID:SCR_001503

    This resource has 100+ mentions.

http://toppcluster.cchmc.org/

A tool for performing multi-cluster gene functional enrichment analyses on large scale data (microarray experiments with many time-points, cell-types, tissue-types, etc.). It facilitates co-analysis of multiple gene lists and yields as output a rich functional map showing the shared and list-specific functional features. The output can be visualized in tabular, heatmap or network formats using built-in options as well as third-party software. It uses the hypergeometric test to obtain functional enrichment achieved via the gene list enrichment analysis option available in ToppGene.

Proper citation: ToppCluster (RRID:SCR_001503) Copy   


  • RRID:SCR_021933

    This resource has 1+ mentions.

https://www.mirion.com/products/genie-2000-basic-spectroscopy-software

Software tool as comprehensive environment for data acquisition, display and analysis of gamma and alpha spectrometry data.

Proper citation: Genie 2000 Basic (RRID:SCR_021933) Copy   


  • RRID:SCR_003009

    This resource has 10+ mentions.

http://www.GeneWeaver.org

Freely accessible phenotype-centered database with integrated analysis and visualization tools. It combines diverse data sets from multiple species and experiment types, and allows data sharing across collaborative groups or to public users. It was conceived of as a tool for the integration of biological functions based on the molecular processes that subserved them. From these data, an empirically derived ontology may one day be inferred. Users have found the system valuable for a wide range of applications in the arena of functional genomic data integration.

Proper citation: Gene Weaver (RRID:SCR_003009) Copy   


  • RRID:SCR_001645

    This resource has 100+ mentions.

https://github.com/QMICodeBase/TORTOISEV4

An integrated and flexible software package for processing of DTI data, and in general for the correction of diffusion weighted images to be used for DTI and potentially for high angular resolution diffusion imaging (HARDI) analysis. It can be run on both Linux and Mac platforms. It is composed of two modules named DIFF PREP and DIFF CALC. * DIFF_PREP - software for image resampling, motion, eddy current distortion and susceptibility induced EPI distortion corrections, and for re-orientation of data to a common space * DIFF_CALC - software for tensor fitting, error analysis, color map visualization and ROI analysis In addition, TORTOISE contains additional Utilities, such as a tool for the analysis of multi-center phantom data.

Proper citation: TORTOISE (RRID:SCR_001645) Copy   


  • RRID:SCR_003293

    This resource has 10+ mentions.

http://seer.cancer.gov/resources/

Portal provides SEER research data and software SEER*Stat and SEER*Prep. SEER incidence and population data associated by age, sex, race, year of diagnosis, and geographic areas can be used to examine stage at diagnosis by race/ethnicity, calculate survival by stage at diagnosis, age at diagnosis, and tumor grade or size, determine trends and incidence rates for various cancer sites over time. SEER releases new research data every Spring based on the previous November’s submission of data.

Proper citation: SEER Datasets and Software (RRID:SCR_003293) Copy   


  • RRID:SCR_002504

    This resource has 10+ mentions.

http://nipy.org/nitime/

Software library for time-series analysis of data from neuroscience experiments. It contains a core of numerical algorithms for time-series analysis both in the time and spectral domains, a set of container objects to represent time-series, and auxiliary objects that expose a high level interface to the numerical machinery and make common analysis tasks easy to express with compact and semantically clear code.

Proper citation: Nitime (RRID:SCR_002504) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X