SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.ini.uzh.ch/~acardona/trakem2.html
An ImageJ plugin for morphological data mining, three-dimensional modeling and image stitching, registration, editing and annotation. Two independent modalities exist: either XML-based projects, working directly with the file system, or database-based projects, working on top of a local or remote PostgreSQL database. What can you do with it? * Semantic segmentation editor: order segmentations in tree hierarchies, whose template is exportable for reuse in other, comparable projects. * Model, visualize and export 3D. * Work from your laptop on your huge, remote image storage. * Work with an endless number of images, limited only by the hard drive capacity. Dozens of formats supported thanks to LOCI Bioformats and ImageJ. * Import stacks and even entire grids (montages) of images, automatically stitch them together and homogenize their histograms for best montaging quality. * Add layers conveniently. A layer represents, for example, one 50 nm section (for TEM) or a confocal section. Each layer has its own Z coordinate and thickness, and contains images, labels, areas, nodes of 3d skeletons, profiles... * Insert layer sets into layers: so your electron microscopy serial sections can live inside your optical microscopy sections. * Run any ImageJ plugin on any image. * Measure everything: areas, volumes, pixel intensities, etc. using both built-in data structures and segmentation types, and standard ImageJ ROIs. And with double dissectors! * Visualize RGB color channels changing the opacity of each on the fly, non-destructively. * Annotate images non-destructively with floating text labels, which you can rotate/scale on the fly and display in any color. * Montage/register/stitch/blend images manually with transparencies, semiautomatically, or fully automatically within and across sections, with translation, rigid, similarity and affine models with automatically extracted SIFT features. * Correct the lens distortion present in the images, like those generated in transmission electron microscopy. * Add alpha masks to images using ROIs, for example to split images in two or more parts, or to remove the borders of an image or collection of images. * Model neuronal arbors with 3D skeletons (with areas or radiuses), and synapses with connectors. * Undo all steps. And much more...
Proper citation: TrakEM2 (RRID:SCR_008954) Copy
http://becs.aalto.fi/en/research/bayes/drifter/
Model based Bayesian method for eliminating physiological noise from fMRI data. This algorithm uses image voxel analysis to isolate the cardiac and respiratory noise from the relevant data.
Proper citation: DRIFTER (RRID:SCR_014937) Copy
http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula
Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.
Proper citation: TRACULA (RRID:SCR_013152) Copy
http://www.tbi-impact.org/?p=impact%2Fcalc&btn_calc=GO+TO+CALCULATOR
A calculator that calculates the prediction models for 6 month outcome after Traumatic Brain Injury. Based on extensive prognostic analysis the IMPACT investigators have developed prognostic models for predicting 6 month outcome in adult patients with moderate to severe head injury (Glasgow Coma Scale <=12) on admission. By entering the characteristics into the calculator, the models will provide an estimate of the expected outcome at 6 months. We present three models of increasing complexity (Core, Core + CT, Core + CT + Lab). These models were developed and validated in collaboration with the CRASH trial collaborators on large numbers of individual patient data (the IMPACT database). The models discriminate well, and are particularly suited for purposes of classification and characterization of large cohorts of patients. Extreme caution is required when applying the estimated prognosis to individual patients. The sequential prediction models may be used as an aid to estimate 6 month outcome in patients with severe or moderate traumatic brain injury (TBI). However, the prediction rule can only complement, never replace, clinical judgment and can therefore be used only as a decision-support system.
Proper citation: IMPACT Prognostic Calculator (RRID:SCR_004730) Copy
Web based tool to visualize gene expression and metadata annotation distribution throughout single cell dataset or multiple datasets. Interactive viewer for single cell expression. You can click on and hover over cells to get meta information, search for genes to color on and click clusters to show cluster specific marker genes.
Proper citation: UCSC Cell Browser (RRID:SCR_023293) Copy
https://datascience.uth.edu/medcis
NIH funded center to provide system for sharing multimodal epilepsy data for Sudden Unexpected Death in Epilepsy. Modality Epilepsy Data Capture and Integration System (MEDCIS) is cross cohort query interface for SUDEP (Sudden Unexpected Death in EPilepsy) research.
Proper citation: University of Texas Health Science at Houston Center for SUDEP Research (RRID:SCR_024700) Copy
A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.
Proper citation: NeuroMab (RRID:SCR_003086) Copy
http://rkscope.sourceforge.net/
Two photon microscope control software with multi area capabilities.
Proper citation: Scope (RRID:SCR_017454) Copy
https://github.com/flatironinstitute/mountainsort
Neurophysiological spike sorting software.
Proper citation: MountainSort (RRID:SCR_017446) Copy
https://cloudreg.neurodata.io/
Software automated, terascale, cloud based image analysis pipeline for preprocessing and cross modal, nonlinear registration between volumetric datasets with artifacts. Automatic terabyte scale cross modal brain volume registration.
Proper citation: CloudReg (RRID:SCR_022795) Copy
https://github.com/danbider/lightning-pose
Software video centric package for direct video manipulation. Semi supervised animal pose estimation algorithm, Bayesian post processing approach and deep learning package. Improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open-source tools.
Proper citation: Lightning Pose (RRID:SCR_024480) Copy
Software suite to analyse gait trials collected with Experimental Dynamic Gait Arena for Rodents. Used for rodent gait analysis.
Proper citation: GAITOR Suite (RRID:SCR_023031) Copy
Evidence based, expert curated knowledge base for synapse. Universal reference for synapse research and online analysis platform for interpretation of omics data. Interactive knowledge base that accumulates available research about synapse biology using Gene Ontology annotations to novel ontology terms.
Proper citation: SynGO (RRID:SCR_017330) Copy
https://github.com/lambdaloop/anipose
Software package for 3D pose estimation. Uses DeepLabCut for 2D tracking and uses triangulation methods to project pose estimations into three dimensions.Toolkit for robust markerless 3D pose estimation.
Proper citation: Anipose (RRID:SCR_023041) Copy
http://www.stanford.edu/group/exonarray/cgi-bin/plot_selector.pl
Transcriptome database of acutely isolated purified astrocytes, neurons, and oligodendrocytes. Provides improved cell-type-specific markers for better understanding of neural development, function, and disease.
Proper citation: Exon Array Browser (RRID:SCR_008712) Copy
http://ccr.coriell.org/Sections/Collections/NINDS/?SsId=10
Open resource of biological samples (DNA, cell lines, and other biospecimens) and corresponding phenotypic data to promote neurological research. Samples from more than 34,000 unique individuals with cerebrovascular disease, dystonia, epilepsy, Huntington's Disease, motor neuron disease, Parkinsonism, and Tourette Syndrome, as well as controls (population control and unaffected relatives) have been collected. The mission of the NINDS Repository is to provide 1) genetics support for scientists investigating pathogenesis in the central and peripheral nervous systems through submissions and distribution; 2) information support for patients, families, and advocates concerned with the living-side of neurological disease and stroke.
Proper citation: NINDS Repository (RRID:SCR_004520) Copy
http://dx.doi.org/10.5281/zenodo.21157
A graphical source code file used for an automated motion detection and reward system for animal training (see comment for full paper title). It was designed on the LabVIEW programming system. Running the program requires the appropriate LabVIEW runtime software from National Instruments Corporation.
Proper citation: Monkey Motion (RRID:SCR_014285) Copy
https://kimlab.io/brain-map/epDevAtlas/
Suite of open access resources including 3D atlases of early postnatally developing mouse brain and mapped cell type density growth charts, which can be used as standalone resources or to implement data integration. Web platform can be utilized to analyze and visualize the spatiotemporal growth of GABAergic, microglial, and cortical layer-specific cell type densities in 3D. Morphologically averaged symmetric template brains serve as the basis reference space and coordinate system with an isotropic resolution of 20 μm (XYZ in coronal plane). Average transformations were conducted at 20 μm voxel resolution by interpolating high resolution serial two photon tomography images from primarily Vip-IRES-Cre;Ai14 mice at postnatal (P) ages P4, P6, P8, P10, P12, and P14. For all ages, anatomical labels from the P56 Allen Mouse Brain Common Coordinate Framework (Allen CCFv3) were iteratively down registered to each early postnatal time point in a non-linear manner, aided by manual parcellations of landmarks in 3D, consistent with the Allen Mouse Reference Atlas Ontology.
Proper citation: Early Postnatal Developmental Mouse Brain Atlas (RRID:SCR_024725) Copy
https://github.com/mcelotto/Feature_Info_Transfer
Software application as MATLAB scripts to compute measures of Feature-specific Information Transfer (FIT) and conditional FIT (cFIT). FIT quantifies direction and magnitude of information flow about specific feature S (such as feature of sensory stimulus) between simultaneously recorded brain regions X and Y. cFIT quantifies amount of directed feature information transmitted between regions X and Y that cannot be potentially routed through region Z.
Proper citation: Feature-specific Information Transfer scripts (RRID:SCR_024772) Copy
https://painseq.shinyapps.io/harmonized_painseq_v1/
Harmonized cell atlases using sc/snRNA-seq data obtained from dorsal root ganglia and trigeminal ganglio mammalian datasets.
Proper citation: Harmonized DRG and TG Reference Atlas (RRID:SCR_025720) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.