Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/

Database to store and display somatic mutation information and related details and contains information relating to human cancers. The mutation data and associated information is extracted from the primary literature. In order to provide a consistent view of the data a histology and tissue ontology has been created and all mutations are mapped to a single version of each gene. The data can be queried by tissue, histology or gene and displayed as a graph, as a table or exported in various formats.
Some key features of COSMIC are:
* Contains information on publications, samples and mutations. Includes samples which have been found to be negative for mutations during screening therefore enabling frequency data to be calculated for mutations in different genes in different cancer types.
* Samples entered include benign neoplasms and other benign proliferations, in situ and invasive tumours, recurrences, metastases and cancer cell lines.

Proper citation: COSMIC - Catalogue Of Somatic Mutations In Cancer (RRID:SCR_002260) Copy   


http://www.ebi.ac.uk/swissprot/hpi/hpi.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 03, 2011. IT HAS BEEN REPLACED BY A NEW UniProtKB/Swiss-Prot ANNOTATION PROGRAM CALLED UniProt Chordata protein annotation program. The Human Proteome Initiative (HPI) aims to annotate all known human protein sequences, as well as their orthologous sequences in other mammals, according to the quality standards of UniProtKB/Swiss-Prot. In addition to accurate sequences, we strive to provide, for each protein, a wealth of information that includes the description of its function, domain structure, subcellular location, similarities to other proteins, etc. Although as complete as currently possible, the human protein set they provide is still imperfect, it will have to be reviewed and updated with future research results. They will also create entries for newly discovered human proteins, increase the number of splice variants, explore the full range of post-translational modifications (PTMs) and continue to build a comprehensive view of protein variation in the human population. The availability of the human genome sequence has enabled the exploration and exploitation of the human genome and proteome to begin. Research has now focused on the annotation of the genome and in particular of the proteome. With expert annotation extracted from the literature by biologists as the foundation, it has been possible to expand into the areas of data mining and automatic annotation. With further development and integration of pattern recognition methods and the application of alignments clustering, proteome analysis can now be provided in a meaningful way. These various approaches have been integrated to attach, extract and combine as much relevant information as possible to the proteome. This resource should be valuable to users from both research and industry. We maintain a file containing all human UniProtKB/Swiss-Prot entries. This file is updated at every biweekly release of UniProt and can be downloaded by FTP download, HTTP download or by using a mirroring program which automatically retrieves the file at regular intervals.

Proper citation: Human Proteomics Initiative (RRID:SCR_002373) Copy   


http://bibiserv.techfak.uni-bielefeld.de/agt-sdp/

Database providing automatic test cases for protein-protein docking. A consensus-type approach is proposed processing the whole PDB and classifying protein structures into complexes and unbound proteins by combining information from three different approaches. Out of this classification test cases are generated automatically. All calculations were run on the database. The information stored is available via a web interface. The user can choose several criteria for generating his own subset out of the test cases, e.g. for testing docking algorithms. In unbound protein--protein docking, the complex of two proteins is predicted using the unbound conformations of the proteins (Halperin et al.,2002). For testing of docking algorithms, two unbound proteins which form a known complex have to be identified, so that the result of the docking algorithm can be compared to the known complex. For the identification of test cases, the structures taken from the PDB have to be classified as unbound proteins or complexes and unbound proteins with a 100% sequence identity to one complex part have to be searched. By now, most groups use handpicked test sets. The largest collection of test cases used so far is described by Chen et al. (Chen et al.,2003) and contains 31 test cases for unbound docking. Because of the exponential growth of available protein structures in the PDB, automatic generation of test cases will become more and more important in the future.

Proper citation: Automatic Generated Test-Sets Database for Protein-Protein Docking (RRID:SCR_002281) Copy   


  • RRID:SCR_002277

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/ieb/research/acembly/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 29, 2016. AceView offers an integrated view of the human, nematode and Arabidopsis genes reconstructed by co-alignment of all publicly available mRNAs and ESTs on the genome sequence. Our goals are to offer a reliable up-to-date resource on the genes and their functions and to stimulate further validating experiments at the bench. AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals' transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated. Our goals are to offer an up-to-date resource on the genes, in the hope to stimulate further experiments at the bench, or to help medical research. AceView can be queried by meaningful words or groups of words as well as by most standard identifiers, such as gene names, Entrez Gene ID, UniGene ID, GenBank accessions.

Proper citation: AceView (RRID:SCR_002277) Copy   


http://fullmal.hgc.jp/index_ajax.html

FULL-malaria is a database for a full-length-enriched cDNA library from the human malaria parasite Plasmodium falciparum. Because of its medical importance, this organism is the first target for genome sequencing of a eukaryotic pathogen; the sequences of two of its 14 chromosomes have already been determined. However, for the full exploitation of this rapidly accumulating information, correct identification of the genes and study of their expression are essential. Using the oligo-capping method, this database has produced a full-length-enriched cDNA library from erythrocytic stage parasites and performed one-pass reading. The database consists of nucleotide sequences of 2490 random clones that include 390 (16%) known malaria genes according to BLASTN analysis of the nr-nt database in GenBank; these represent 98 genes, and the clones for 48 of these genes contain the complete protein-coding sequence (49%). On the other hand, comparisons with the complete chromosome 2 sequence revealed that 35 of 210 predicted genes are expressed, and in addition led to detection of three new gene candidates that were not previously known. In total, 19 of these 38 clones (50%) were full-length. From these observations, it is expected that the database contains approximately 1000 genes, including 500 full-length clones. It should be an invaluable resource for the development of vaccines and novel drugs. Full-malaria has been updated in at least three points. (i) 8934 sequences generated from the addition of new libraries added so that the database collection of 11,424 full-length cDNAs covers 1375 (25%) of the estimated number of the entire 5409 parasite genes. (ii) All of its full-length cDNAs and GenBank EST sequences were mapped to genomic sequences together with publicly available annotated genes and other predictions. This precisely determined the gene structures and positions of the transcriptional start sites, which are indispensable for the identification of the promoter regions. (iii) A total of 4257 cDNA sequences were newly generated from murine malaria parasites, Plasmodium yoelii yoelii. The genome/cDNA sequences were compared at both nucleotide and amino acid levels, with those of P.falciparum, and the sequence alignment for each gene is presented graphically. This part of the database serves as a versatile platform to elucidate the function(s) of malaria genes by a comparative genomic approach. It should also be noted that all of the cDNAs represented in this database are supported by physical cDNA clones, which are publicly and freely available, and should serve as indispensable resources to explore functional analyses of malaria genomes. Sponsors: This database has been constructed and maintained by a Grant-in-Aid for Publication of Scientific Research Results from the Japan Society for the Promotion of Science (JSPS). This work was also supported by a Special Coordination Funds for Promoting Science and Technology from the Science and Technology Agency of Japan (STA) and a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan.

Proper citation: Full-Malaria: Malaria Full-Length cDNA Database (RRID:SCR_002348) Copy   


  • RRID:SCR_003496

    This resource has 10000+ mentions.

http://www.ncbi.nlm.nih.gov/RefSeq/

Collection of curated, non-redundant genomic DNA, transcript RNA, and protein sequences produced by NCBI. Provides a reference for genome annotation, gene identification and characterization, mutation and polymorphism analysis, expression studies, and comparative analyses. Accessed through the Nucleotide and Protein databases.

Proper citation: RefSeq (RRID:SCR_003496) Copy   


  • RRID:SCR_003403

    This resource has 10+ mentions.

http://genomequebec.mcgill.ca/PReMod

Database that describes more than 100,000 computational predicted transcriptional regulatory modules within the human genome. These modules represent the regulatory potential for 229 transcription factors families and are the first genome-wide / transcription factor-wide collection of predicted regulatory modules for the human genome. The algorithm used involves two steps: (i) Identification and scoring of putative transcription factor binding sites using 481 TRANSFAC 7.2 position weight matrices (PWMs) for vertebrate transcription factors. To this end, each non-coding position of the human genome was evaluated for its similarity to each PWM using a log-likelihood ratio score with a local GC-parameterized third-order Markov background model. Corresponding orthologous positions in mouse and rat genomes were evaluated similarly and a weighted average of the human, mouse, and rat log-likelihood scores at aligned positions (based on a Multiz (Blanchette et al. 2004) genome-wide alignment of these three species) was used to define the matrix score for each genomic position and each PWM. (ii) Detection of clustered putative binding sites. To assign a module score to a given region, the five transcription factors with the highest total scoring hits are identified, and a p-value is assigned to the total score observed of the top 1, 2, 3, 4, or 5 factors. The p-value computation takes into consideration the number of factors involved (1 to 5), their total binding site scores, and the length and GC content of the region under evaluation. Users can retrieve all information for a given region, a given PWM, a given gene and so on. Several options are given for textual output or visualization of the data.

Proper citation: PReMod (RRID:SCR_003403) Copy   


http://www-bio3d-igbmc.u-strasbg.fr/ICDS/

Database of interrupted coding sequences detected by a similarity-based approach in complete prokaryotic genomes. The definition of each interrupted gene is provided as well as the ICDS genomic localization with the surrounding sequence. To facilitate the experimental characterization of ICDS, optimized primers are proposed for re-sequencing purposes. The database is accessible by BLAST search or by genome. 118 Genomes are available in the database.

Proper citation: Interrupted CoDing Sequence Database (RRID:SCR_002949) Copy   


  • RRID:SCR_003156

    This resource has 100+ mentions.

http://mirnamap.mbc.nctu.edu.tw

A database of experimentally verified microRNAs and miRNA target genes in human, mouse, rat, and other metazoan genomes. In addition to known miRNA targets, three computational tools previously developed, such as miRanda, RNAhybrid and TargetScan, were applied for identifying miRNA targets in 3'-UTR of genes. In order to reduce the false positive prediction of miRNA targets, several criteria are supported for filtering the putative miRNA targets. Furthermore, miRNA expression profiles can provide valuable clues for investigating the properties of miRNAs, such tissue specificity and differential expression in cancer/normal cell. Therefore, we performed the Q-PCR experiments for monitoring the expression profiles of 224 human miRNAs in eighteen major normal tissues in human. The cross-reference between the miRNA expression profiles and the expression profiles of its target genes can provide effective viewpoint to understand the regulatory functions of the miRNA.

Proper citation: miRNAMap (RRID:SCR_003156) Copy   


http://bioinfo.mbi.ucla.edu/ASAP/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on 8/12/13. Database to access and mine alternative splicing information coming from genomics and proteomics based on genome-wide analyses of alternative splicing in human (30 793 alternative splice relationships found) from detailed alignment of expressed sequences onto the genomic sequence. ASAP provides precise gene exon-intron structure, alternative splicing, tissue specificity of alternative splice forms, and protein isoform sequences resulting from alternative splicing. They developed an automated method for discovering human tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs), which involves classifying human EST libraries according to tissue categories and Bayesian statistical analysis. They use the UniGene clusters of human Expressed Sequence Tags (ESTs) to identify splices. The UniGene EST's are clustered so that a single cluster roughly corresponds to a gene (or at least a part of a gene). A single EST represents a portion of a processed (already spliced) mRNA. A given cluster contains many ESTs, each representing an outcome of a series of splicing events. The ESTs in UniGene contain the different mRNA isoforms transcribed from an alternatively spliced gene. They are not predicting alternative splicing, but locating it based on EST analysis. The discovered splices are further analyzed to determine alternative splicing events. They have identified 6201 alternative splice relationships in human genes, through a genome-wide analysis of expressed sequence tags (ESTs). Starting with 2.1 million human mRNA and EST sequences, they mapped expressed sequences onto the draft human genome sequence and only accepted splices that obeyed the standard splice site consensus. After constructing a tissue list of 46 human tissues with 2 million human ESTs, they generated a database of novel human alternative splices that is four times larger than our previous report, and used Bayesian statistics to compare the relative abundance of every pair of alternative splices in these tissues. Using several statistical criteria for tissue specificity, they have identified 667 tissue-specific alternative splicing relationships and analyzed their distribution in human tissues. They have validated our results by comparison with independent studies. This genome-wide analysis of tissue specificity of alternative splicing will provide a useful resource to study the tissue-specific functions of transcripts and the association of tissue-specific variants with human diseases.

Proper citation: ASAP: the Alternative Splicing Annotation Project (RRID:SCR_003415) Copy   


http://www.mitomap.org/

Database of polymorphisms and mutations of the human mitochondrial DNA. It reports published and unpublished data on human mitochondrial DNA variation. All data is curated by hand. If you would like to submit published articles to be included in mitomap, please send them the citation and a pdf.

Proper citation: MITOMAP - A human mitochondrial genome database (RRID:SCR_002996) Copy   


  • RRID:SCR_004123

    This resource has 10+ mentions.

http://www.flytf.org/

A database of genomic and protein data for Drosophila site-specific transcription factors.

Proper citation: FlyTF.org (RRID:SCR_004123) Copy   


http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=7165

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. A database for the Anopheles gambiae str. PEST genome that was sequenced using a whole genome shotgun approach. The database aims to contribute to the understanding of mosquito genome structure and organization and will assist the development of malaria control strategies and improved anti-malarial drugs and vaccines. Sequences were generated and assembled into contigs for submission to GenBank.

Proper citation: Anopheles gambiae (African malaria mosquito) genome view (RRID:SCR_004402) Copy   


  • RRID:SCR_008801

    This resource has 5000+ mentions.

http://aws.amazon.com/1000genomes/

A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.

Proper citation: 1000 Genomes Project and AWS (RRID:SCR_008801) Copy   


  • RRID:SCR_008524

    This resource has 1+ mentions.

http://www.sanger.ac.uk/Projects/Fungi/

Fungal genomes available from the Sanger Institute. Data are accessible in a number of ways; for each organism there is a BLAST server, allowing search of the sequences. Sequences can also be down-loaded directly by FTP. In addition, for those organisms being sequenced using a cosmid approach, finished and annotated cosmids are submitted to EMBL and other public databases.

Proper citation: Fungi Sequencing Projects (RRID:SCR_008524) Copy   


  • RRID:SCR_002426

    This resource has 10+ mentions.

http://www.ebi.ac.uk/genomes

The EBI genomes pages give access to a large number of complete genomes including bacteria, archaea, viruses, phages, plasmids, viroids and eukaryotes. Methods using whole genome shotgun data are used to gain a large amount of genome coverage for an organism. WGS data for a growing number of organisms are being submitted to DDBJ/EMBL/GenBank. Genome entries have been listed in their appropriate category which may be browsed using the website navigation tool bar on the left. While organelles are all listed in a separate category, any from Eukaryota with chromosome entries are also listed in the Eukaryota page. Within each page, entries are grouped and sorted at the species level with links to the taxonomy page for that species separating each group. Within each species, entries whose source organism has been categorized further are grouped and numbered accordingly. Links are made to: * taxonomy * complete EMBL flatfile * CON files * lists of CON segments * Project * Proteomes pages * FASTA file of Proteins * list of Proteins

Proper citation: EBI Genomes (RRID:SCR_002426) Copy   


  • RRID:SCR_003169

    This resource has 10+ mentions.

http://www.broad.mit.edu/annotation/fungi/fgi/

Produces and analyzes sequence data from fungal organisms that are important to medicine, agriculture and industry. The FGI is a partnership between the Broad Institute and the wider fungal research community, with the selection of target genomes governed by a steering committee of fungal scientists. Organisms are selected for sequencing as part of a cohesive strategy that considers the value of data from each organism, given their role in basic research, health, agriculture and industry, as well as their value in comparative genomics.

Proper citation: Fungal Genome Initiative (RRID:SCR_003169) Copy   


http://www.stsiweb.org/SWGR/

Whole genome sequencing data for 454 unrelated Scripps Wellderly Study participants with European ancestry from a project that is studying the genetic architecture of exceptional healthspan from a cohort comprised of more than 1300 healthy individuals over the age of 80 years. SWGR_v1.0 includes chromosome-specific VCF4.1 bgzipped and tabix indexed files. Annotations for each variant can be found at Scripps Genome ADVISER (SG-ADVISER, http://genomics.scripps.edu/) Additional data releases are expected.

Proper citation: Scripps Wellderly Genome Reference (RRID:SCR_010250) Copy   


  • RRID:SCR_001897

    This resource has 10+ mentions.

http://www.fged.org/

Society that develop standards for biological research data quality, annotation and exchange. They facilitate the creation and use of software tools that build on these standards and allow researchers to annotate and share their data easily. They promote scientific discovery that is driven by genome wide and other biological research data integration and meta-analysis. Historically, FGED began with a focus on microarrays and gene expression data. However, the scope of FGED now includes data generated using any technology when applied to genome-scale studies of gene expression, binding, modification and other related applications.

Proper citation: FGED (RRID:SCR_001897) Copy   


  • RRID:SCR_002965

    This resource has 100+ mentions.

http://img.jgi.doe.gov/cgi-bin/m/main.cgi

Resource for analysis and annotation of genome and metagenome datasets in comprehensive comparative context. IMG provides users with tools for analyzing publicly available genome datasets and metagenome datasets.

Proper citation: IMG System (RRID:SCR_002965) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X