SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A functional network for laboratory mouse based on integration of diverse genetic and genomic data. It allows the users to accurately predict novel functional assignments and network components. MouseNET uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the mouseNET algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. The graph may be explored further. As you move the mouse over genes in the network, interactions involving these genes are highlighted.If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed.
Proper citation: MouseNET (RRID:SCR_003357) Copy
http://function.princeton.edu/GOLEM/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented July 7, 2017. Welcome to the home of GOLEM: An interactive, graphical gene-ontology visualization, navigation,and analysis tool on the web. GOLEM is a useful tool which allows the viewer to navigate and explore a local portion of the Gene Ontology (GO) hierarchy. Users can also load annotations for various organisms into the ontology in order to search for particular genes, or to limit the display to show only GO terms relevant to a particular organism, or to quickly search for GO terms enriched in a set of query genes. GOLEM is implemented in Java, and is available both for use on the web as an applet, and for download as a JAR package. A brief tutorial on how to use GOLEM is available both online and in the instructions included in the program. We also have a list of links to libraries used to make GOLEM, as well as the various organizations that curate organism annotations to the ontology. GOLEM is available as a .jar package and a macintosh .app for use on- or off- line as a stand-alone package. You will need to have Java (v.1.5 or greater) installed on your system to run GOLEM. Source code (including Eclipse project files) are also available. GOLEM (Gene Ontology Local Exploration Map)is a visualization and analysis tool for focused exploration of the gene ontology graph. GOLEM allows the user to dynamically expand and focus the local graph structure of the gene ontology hierarchy in the neighborhood of any chosen term. It also supports rapid analysis of an input list of genes to find enriched gene ontology terms. The GOLEM application permits the user either to utilize local gene ontology and annotations files in the absence of an Internet connection, or to access the most recent ontology and annotation information from the gene ontology webpage. GOLEM supports global and organism-specific searches by gene ontology term name, gene ontology id and gene name. CONCLUSION: GOLEM is a useful software tool for biologists interested in visualizing the local directed acyclic graph structure of the gene ontology hierarchy and searching for gene ontology terms enriched in genes of interest. It is freely available both as an application and as an applet.
Proper citation: GOLEM An interactive, graphical gene-ontology visualization, navigation, and analysis tool (RRID:SCR_003191) Copy
http://sourceforge.net/p/fastsemsim/home/Home/
A package that implements several semantic similarity measures. It is both a library and an end-user application, featuring an intuitive graphical user interface (GUI). It has been implemented with the aim of being fast, expandable, and easy to use. It allows the user to work with the most updated version of GO database and customizable annotation corpora. It provides a set of logically-organized classes that can be easily exploited to both integrate semantic similarity into different analysis pipelines and extend the library with new measures. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: FastSemSim (RRID:SCR_006919) Copy
http://geneontology.org/docs/tools-overview/
Collection of tools developed by GO Consortium and by third parties. Tools are listed by category or alphabetically and continue to be improved and expanded.
Proper citation: Gene Ontology Tools (RRID:SCR_006941) Copy
http://autismkb.cbi.pku.edu.cn/
Genetic factors contribute significantly to ASD. AutismKB is an evidence-based knowledgebase of Autism spectrum disorder (ASD) genetics. The current version contains 2193 genes (99 syndromic autism related genes and 2135 non-syndromic autism related genes), 4617 Copy Number Variations (CNVs) and 158 linkage regions associated with ASD by one or more of the following six experimental methods: # Genome-Wide Association Studies (GWAS); # Genome-wide CNV studies; # Linkage analysis; # Low-scale genetic association studies; # Expression profiling; # Other low-scale gene studies. Based on a scoring and ranking system, 99 syndromic autism related genes and 383 non-syndromic autism related genes (434 genes in total) were designated as having high confidence. Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a prevalence of 1.0-2.6%. The three core symptoms of ASD are: # impairments in reciprocal social interaction; # communication impairments; # presence of restricted, repetitive and stereotyped patterns of behavior, interests and activities.
Proper citation: AutismKB (RRID:SCR_006937) Copy
canSAR is an integrated database that brings together biological, chemical, pharmacological (and eventually clinical) data. Its goal is to integrate this data and make it accessible to cancer research scientists from multiple disciplines, in order to help with hypothesis generation in cancer research and support translational research. This cancer research and drug discovery resource was developed to utilize the growing publicly available biological annotation, chemical screening, RNA interference screening, expression, amplification and 3D structural data. Scientists can, in a single place, rapidly identify biological annotation of a target, its structural characterization, expression levels and protein interaction data, as well as suitable cell lines for experiments, potential tool compounds and similarity to known drug targets. canSAR has, from the outset, been completely use-case driven which has dramatically influenced the design of the back-end and the functionality provided through the interfaces. The Web interface provides flexible, multipoint entry into canSAR. This allows easy access to the multidisciplinary data within, including target and compound synopses, bioactivity views and expert tools for chemogenomic, expression and protein interaction network data.
Proper citation: canSAR (RRID:SCR_006794) Copy
http://pathways.mcdb.ucla.edu/algal/
Tools to search gene lists for functional term enrichment as well as to dynamically visualize proteins onto pathway maps. Additionally, integrated expression data may be used to discover similarly expressed genes based on a starting gene of interest.
Proper citation: Algal Functional Annotation Tool (RRID:SCR_012034) Copy
https://omictools.com/l2l-tool
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 26, 2019.
Database of published microarray gene expression data, and a software tool for comparing that published data to a user''''s own microarray results. It is very simple to use - all you need is a web browser and a list of the probes that went up or down in your experiment. If you find L2L useful please consider contributing your published data to the L2L Microarray Database in the form of list files. L2L finds true biological patterns in gene expression data by systematically comparing your own list of genes to lists of genes that have been experimentally determined to be co-expressed in response to a particular stimulus - in other words, published lists of microarray results. The patterns it finds can point to the underlying disease process or affected molecular function that actually generated the observed changed in gene expression. Its insights are far more systematic than critical gene analyses, and more biologically relevant than pure Gene Ontology-based analyses. The publications included in the L2L MDB initially reflected topics thought to be related to Cockayne syndrome: aging, cancer, and DNA damage. Since then, the scope of the publications included has expanded considerably, to include chromatin structure, immune and inflammatory mediators, the hypoxic response, adipogenesis, growth factors, hormones, cell cycle regulators, and others. Despite the parochial origins of the database, the wide range of topics covered will make L2L of general interest to any investigator using microarrays to study human biology. In addition to the L2L Microarray Database, L2L contains three sets of lists derived from Gene Ontology categories: Biological Process, Cellular Component, and Molecular Function. As with the L2L MDB, each GO sub-category is represented by a text file that contains annotation information and a list of the HUGO symbols of the genes assigned to that sub-category or any of its descendants. You don''''t need to download L2L to use it to analyze your microarray data. There is an easy-to-use web-based analysis tool, and you have the option of downloading your results so you can view them at any time on your own computer, using any web browser. However, if you prefer, the entire L2L project, and all of its components, can be downloaded from the download page. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: L2L Microarray Analysis Tool (RRID:SCR_013440) Copy
Database for ESTs (Expressed Sequence Tags), consensus sequences, bacterial artificial chromosome (BAC) clones, BES (BAC End Sequences). They have generated 69,545 ESTs from 6 full-length cDNA libraries (Porcine Abdominal Fat, Porcine Fat Cell, Porcine Loin Muscle, Liver and Pituitary gland). They have also identified a total of 182 BAC contigs from chromosome 6. It is very valuable resources to study porcine quantitative trait loci (QTL) mapping and genome study. Users can explore genomic alignment of various data types, including expressed sequence tags (ESTs), consensus sequences, singletons, QTL, Marker, UniGene and BAC clones by several options. To estimate the genomic location of sequence dataset, their data aligned BES (BAC End Sequences) instead of genomic sequence because Pig Genome has low-coverage sequencing data. Sus scrofa Genome Database mainly provide comparative map of four species (pig, cattle, dog and mouse) in chromosome 6.
Proper citation: PiGenome (RRID:SCR_013394) Copy
Natural Antisense Transcripts (NATs), a kind of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and/or pathological processes. PlantNATsDB (Plant Natural Antisense Transcripts DataBase) is a platform for annotating and discovering NATs by integrating various data sources involving approximately 2 million NAT pairs in 69 plant species. PlantNATsDB also provides an integrative, interactive and information-rich web graphical interface to display multidimensional data, and facilitate plant research community and the discovery of functional NATs. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. A ''''Gene Set Analysis'''' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs.
Proper citation: PlantNATsDB - Plant Natural Antisense Transcripts DataBase (RRID:SCR_013278) Copy
A web-based tool to support meta-analysis of multiple gene-expression data sets, as well as to enable integration of data sets from gene expression and metabolomics experiments. INMEX contains three functional modules. The data preparation module supports flexible data processing, annotation and visualization of individual data sets. The statistical analysis module allows researchers to combine multiple data sets based on P-values, effect sizes, rank orders and other features. The significant genes can be examined in functional analysis module for enriched Gene Ontology terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, or expression profile visualization. INMEX has built-in support for common gene/metabolite identifiers (IDs), as well as 45 popular microarray platforms for human, mouse and rat. Complex operations are performed through a user-friendly web interface in a step-by-step manner.
Proper citation: INMEX (RRID:SCR_004173) Copy
http://biomine.cs.helsinki.fi/
Service that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. In particular, it formulates protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph.
Proper citation: Biomine (RRID:SCR_003552) Copy
http://kt.ijs.si/software/SEGS/
A web tool for descriptive analysis of microarray data. The analysis is performed by looking for descriptions of gene sets that are statistically significantly over- or under-expressed between different scenarios within the context of a genome-scale experiments (DNA microarray). Descriptions are defined by using the terms from the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene-gene interactions found in the ENTREZ database. Gene annotations by GO and KEGG terms can also be found in the ENTREZ database. The tool provides three procedures for testing the enrichment of the gene sets (over- or under-expressed): Fisher's exact test, GSEA and PAGE, and option for combining the results of the tests. Because of the multiple-hypothesis testing nature of the problem, all the p-values are computed using the permutation testing method.
Proper citation: SEGS (RRID:SCR_003554) Copy
http://www.plexdb.org/plex.php?database=Barley/funcexpression.php
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 11, 2012. FuncExpression is a web-based resource for functional interpretation of large scale genomics data. FuncExpression can be used for the functional comparison of plant, animal, and fungal gene name lists generated from genomics and proteomics experiments. Multiple gene lists can be classified, compared and visualized. FuncExpression supports two way-integration of plant gene functional information and the gene expression data, which allows for further cross-validation with plant microarray data from related experiments at BarleyBase. Platform: Online tool
Proper citation: FuncExpression (RRID:SCR_005773) Copy
http://webclu.bio.wzw.tum.de/profcom/
Profiling of Complex Functionality (ProfCom) is a web-based tool for the functional interpretation of a gene list that was identified to be related by experiments. A trait which makes ProfCom a unique tool is an ability to profile enrichments of not only available Gene Ontology (GO) terms but also of complex function. A complex function is constructed as Boolean combination of available GO terms. The complex functions inferred by ProfCom are more specific in comparison to single terms and describe more accurately the functional role of genes. Platform: Online tool
Proper citation: ProfCom - Profiling of complex functionality (RRID:SCR_005797) Copy
http://estbioinfo.stat.ub.es/apli/serbgov131/index.php
SerbGO is a web-based tool intended to assist researchers determine which microarray tools for gene expression analysis which make use of the GO ontologies are best suited to their projects. SerbGO is a bidirectional application. The user can ask for some features by checking on the Query Form to get the appropriate tools for their interests. The user can also compare tools to check which features are implemented in each one. Platform: Online tool
Proper citation: SerbGO (RRID:SCR_005798) Copy
http://www.compbio.dundee.ac.uk/gotcha/gotcha.php
GOtcha provides a prediction of a set of GO terms that can be associated with a given query sequence. Each term is scored independently and the scores calibrated against reference searches to give an accurate percentage likelihood of correctness. These results can be displayed graphically. Why is GOtcha different to what is already out there and why should you be using it? * GOtcha uses a method where it combines information from many search hits, up to and including E-values that are normally discarded. This gives much better sensitivity than other methods. * GOtcha provides a score for each individual term, not just the leaf term or branch. This allows the discrimination between confident assignments that one would find at a more general level and the more specific terms that one would have lower confidence in. * The scores GOtcha provides are calibrated to give a real estimate of correctness. This is expressed as a percentage, giving a result that non-experts are comfortable in interpreting. * GOtcha provides graphical output that gives an overview of the confidence in, or potential alternatives for, particular GO term assignments. The tool is currently web-based; contact David Martin for details of the standalone version. Platform: Online tool
Proper citation: GOtcha (RRID:SCR_005790) Copy
http://xldb.fc.ul.pt/biotools/rebil/goa/
A tool for assisting the GO annotation of UniProt entries by linking the GO terms present in the uncurated annotations with evidence text automatically extracted from the documents linked to UniProt entries. Platform: Online tool
Proper citation: GoAnnotator (RRID:SCR_005792) Copy
http://gopubmed.org/web/gopubmed/
A web server which allows users to explore PubMed search results with the Gene Ontology, a hierarchically structured vocabulary for molecular biology. GoPubMed submits a user''''s keywords to PubMed, retrieves the abstracts, detects Gene Ontology terms in the abstracts, displays the subset of Gene Ontology relevant to the original query, and allows the user to browse through the ontology displaying associated papers and their GO annotation. Platform: Online tool
Proper citation: GoPubMed (RRID:SCR_005823) Copy
http://agbase.msstate.edu/cgi-bin/tools/goslimviewer_select.pl
Service to summarize the GO function associated with a data set using prepared GO Slim sets. The input is a tab separated list of gene product IDs and GO IDs.
Proper citation: GOSlimViewer (RRID:SCR_005665) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.