SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://community.brain-map.org/t/allen-human-reference-atlas-3d-2020-new/405
Parcellation of adult human brain in 3D, labeling every voxel with brain structure spanning 141 structures. These parcellations were drawn and adapted from prior 2D version of adult human brain atlas.
Proper citation: Allen Human Reference Atlas, 3D, 2020 (RRID:SCR_017764) Copy
https://edspace.american.edu/openbehavior/project/deepbehavior/
Project related to behavior tracking and analysis. Provides deep learning toolbox that automates taking high speed quality video to track behavior in rodents and humans.
Proper citation: DeepBehavior project (RRID:SCR_021387) Copy
https://gillisweb.cshl.edu/Primate_MTG_coexp/
We aligned single-nucleus atlases of middle temporal gyrus (MTG) of 5 primates (human, chimp, gorilla, macaque and marmoset) and identified 57 consensus cell types common to all species. We provide this resource for users to: 1) explore conservation of gene expression across primates at single cell resolution; 2) compare with conservation of gene coexpression across metazoa, and 3) identify genes with changes in expression or connectivity that drive rapid evolution of human brain.
Proper citation: Gene functional conservation across cell types and species (RRID:SCR_023292) Copy
The VPH NoE is a project which aims to help support and progress European research in biomedical modeling and simulation of the human body. This project will improve our ability to predict, diagnose and treat disease, and have a dramatic impact on the future of healthcare, the pharmaceutical and medical device industries. The VPH Network of Excellence (VPH NoE) is designed to foster, harmonize and integrate pan-European research in the field of i) patient-specific computer models for personalised and predictive healthcare and ii) ICT-based tools for modeling and simulation of human physiology and disease-related processes. The main objectives of the VPH Network of Excellence are to support the: :- Coordination of research portfolios of VPH NoE partners through initiation of Exemplar integrative research projects that encourage inter-institution and interdisciplinary VPH research; :- Integration of research infrastructures of VPH NoE partners through development of the VPH ToolKit: a shared and mutually accessible source of research equipment, managerial and research infrastructures, facilities and services; :- Development of a portfolio of interdisciplinary training activities including a formal consultation on, and assessment of, VPH careers; :- Establishment of a core set of VPH-related dissemination and networking activities which will engage everyone from partners within the VPH NoE/other VPH projects, to national policy makers, to the public at large; :- Creation of Industrial, Clinical and Scientific Advisory Boards that will jointly guide the direction of the VPH NoE and, through consultation, explore the practical and legal options for real and durable integration within the VPH research community; :- Implementation of key working groups that will pursue specific issues relating to VPH, notably integrating VPH research worldwide through international physiome initiatives. Finally, by involving clinical and industrial stakeholders, VPH NoE also plans to lay a reliable ground to support sustainable interactions and collaboration between research and healthcare communities. Virtual Physiological Human lists, as its main target outcome, patient-specific computer models for personalized and predictive healthcare and ICT-based tools for modeling and simulation of human physiology and disease-related processes. Collaborative projects (IPs and STREPs) within the call will meet specific objectives, addressing: patient-specific computational modeling and simulation of organs or systems data integration and new knowledge extraction and clinical applications and demonstration of tangible benefits of patient-specific computational models. The networking action outlined within the call - the VPH NoE - should serve to connect these efforts, and lay the foundations for the methodological and technical framework to support such research. It should also build on previous EC investment in this field, including the outcomes of VPH type' projects funded within the EU Sixth Framework Programme, and through other National and International initiatives. The Virtual Physiological Human Network of Excellence (VPH NoE) has been designed with "service to the community" of VPH researchers as its primary purpose. Its aims range from the development of a VPH ToolKit and associated infrastructural resources, through integration of models and data across the various relevant levels of physiological structure and functional organization, to VPH community building and support. The VPH NoE aims to foster the development of new and sustainable educational, training and career structures for those involved in VPH related science, technology and medicine. The VPH NoE constitutes a leading group of universities, institutes and organizations who will, by integrating their experience and ongoing activities in VPH research, promote the creation of an environment that actively supports and nurtures interdisciplinary research, education, training and strategic development. The VPH NoE will lead the coordination of diverse activities within the VPH Initiative to help deliver: new environments for predictive, patient-specific, evidence-based, more effective and safer healthcare; improved semantic interoperability of biomedical information and contribution to a common health information infrastructure; facile, on-demand access to distributed European computational infrastructure to support clinical decision making; and increased European multidisciplinary research excellence in biomedical informatics and molecular medicine by fostering closer cooperation between ICT, medical device, medical imaging, pharmaceutical and biotech companies. The VPH NoE will connect the diverse VPH Initiative projects, including not only those funded as part of the VPH initiative but also those of previous EC frameworks and national funding schemes, together with industry, healthcare providers, and international organizations, thereby ensuring that these impacts will be realized. VPH NoE work packages and project structure The VPH NoE activities are divided between five main work packages (follow the links at the top of the page for more information on each). In brief, the focus of each work package is as follows: -Work package 1: Network Management -Work package 2: VPH NoE Exemplar Projects -Work package 3: VPH NoE ToolKit development -Work package 4: VPH NoE Training and Career Development -Work package 5: Spreading Excellence within the VPH NoE and VPH-I In view of its role as the networking action for the VPH Initiative, all VPH NoE activities have been designed to serve and interconnect not only the VPH NoE core members, but also the projects funded within the VPH call (VPH-I) and the wider research community. Key activities which the VPH NoE will pursue, in support of the development of a research environment which facilitates integrative, interdisciplinary and multilevel VPH research, are: -Support for integrative research -Training and dissemination activities -Networking activities Sponsors: VPH NoE is supported by The Directorate-General Research (DG RTD) and The Directorate-General Information Society and Media (DG INFSO).
Proper citation: Virtual Physiological Human Network of Excellence (RRID:SCR_002855) Copy
Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.
Proper citation: Sal-Site (RRID:SCR_002850) Copy
Computational biology research at Memorial Sloan-Kettering Cancer Center (MSKCC) pursues computational biology research projects and the development of bioinformatics resources in the areas of: sequence-structure analysis; gene regulation; molecular pathways and networks, and diagnostic and prognostic indicators. The mission of cBio is to move the theoretical methods and genome-scale data resources of computational biology into everyday laboratory practice and use, and is reflected in the organization of cBio into research and service components ~ the intention being that new computational methods created through the process of scientific inquiry should be generalized and supported as open-source and shared community resources. Faculty from cBio participate in graduate training provided through the following graduate programs: * Gerstner Sloan-Kettering Graduate School of Biomedical Sciences * Graduate Training Program in Computational Biology and Medicine Integral to much of the research and service work performed by cBio is the creation and use of software tools and data resources. The tools that we have created and utilize provide evidence of our involvement in the following areas: * Cancer Genomics * Data Repositories * iPhone & iPod Touch * microRNAs * Pathways * Protein Function * Text Analysis * Transcription Profiling
Proper citation: Computational Biology Center (RRID:SCR_002877) Copy
http://www.ouhsc.edu/compmed/documents/DevelopmentofaSpecificPathogenFreeBaboonColony.pdf
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 4th,2023. Program developing a self-sustaining colony of baboons free of all known herpesviruses, four retroviruses, and SV40 for research. When the program is fully developed, they will provide healthy, behaviorally normal, SPF baboons that are free of all known herpes viruses, four retroviruses, and SV40. To accomplish this goal, the center has established in collaboration with co-investigators and consultants serological and PCR tests for each of the 11 target viruses. These baboon viruses include six herpesviruses (analogs of human HSV, VZV, CMV, HHV6, EBV, and HHV8), four retroviruses (simian foamy virus, SRV/D, SIV, and STLV), and SV40. Twenty-four infant baboons are being recruited into the SPF program in each of the first five years, for a final total of at least 66 SPF baboons. All infants will be repeatedly tested for each of the target viruses. At one month of age, larger social groups of 4-6 SPF animals are formed. Beginning at 2-3 years of age, SPF animals will be integrated into larger socially compatible groups. These groups will eventually mature into breeding harems of SPF animals. This approach provides infants with age-matched companions for socialization during their early period of development, minimizes opportunities for transmission of viruses to the infants from adult animals, and allows for the simultaneous elimination of many different viruses from SPF animals.
Proper citation: Development of a Specific-Pathogen-Free Baboon Colony (RRID:SCR_002900) Copy
https://www.msu.edu/~brains/index.html
The Brain Biodiversity Bank refers to the repository of images of and information about brain specimens contained in the collections associated with the National Museum of Health and Medicine at the Armed Forces Institute of Pathology in Washington, DC. Atlases and brain sections are available for a variety of mammals, and we are also developing a series of labeled atlases of stained sections for educators, students, and researchers. These collections include, besides the Michigan State University Collection, the Welker Collection from the University of Wisconsin, the Yakovlev-Haleem Collection from Harvard University, the Meyer Collection from the Johns Hopkins University, and the Huber-Crosby and Crosby-Lauer Collections from the University of Michigan. What we are doing currently at Michigan State is a series of demonstration projects for publicizing the contents of the collections and ways in which they can be used. For example, the images from the collection can be used for comparative brain study. We have prepared databases of the contents of the collections for presentation and use on this site, as well as for downloading by users in several formats. We are also developing a series of labeled atlases of stained sections for educators, students, and researchers. This internet site is associated with the Comparative Mammalian Brain Collections site. All of the images are in JPEG or GIF format.
Proper citation: Michigan State University Brain Biodiversity Bank (RRID:SCR_003289) Copy
http://en.wikibooks.org/wiki/Human_Physiology
Human Physiology is a featured book on Wikibooks because it contains substantial content, it is well-formatted, and the Wikibooks community has decided to feature it on the main page or in other places. Please continue to improve it and thanks for the great work so far! A printable and PDF version are available. You can edit its advertisement template. Contents: 1. Homeostasis 2. Cell Physiology 3. Integumentary System 4. The Nervous System 5. Senses 6. The Muscular System 7. Blood Physiology 8. The Cardiovascular System 9. The Immune System 10. The Urinary System 11. The Respiratory System 12. The Gastrointestinal System 13. Nutrition 14. The Endocrine System 15. The Male Reproductive System 16. The Female Reproductive System 17. Pregnancy and Birth 18. Genetics and Inheritance 19. Development: Birth through Death 20. Appendix 1: Answers to Review Questions 21. Authors 22. Further Reading
Proper citation: Human Physiology (RRID:SCR_003525) Copy
http://national_databank.mclean.org
THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. A publicly accessible data repository to provide neuroscience investigators with secure access to cohort collections. The Databank collects and disseminates gene expression data from microarray experiments on brain tissue samples, along with diagnostic results from postmortem studies of neurological and psychiatric disorders. All of the data that is derived from studies of the HBTRC collection is being incorporated into the National Brain Databank. This data is available to the general public, although strict precautions are undertaken to maintain the confidentiality of the brain donors and their family members. The system is designed to incorporate MIAME and MAGE-ML based microarray data sharing standards. Data from various types of studies conducted on brain tissue in the HBTRC collection will be available from studies using different technologies, such as gene expression profiling, quantitative RT-PCR, situ hybridization, and immunocytochemistry and will have the potential for providing powerful insights into the subregional and cellular distribution of genes and/or proteins in different brain regions and eventually in specific subregions and cellular subtypes.
Proper citation: National Brain Databank (RRID:SCR_003606) Copy
http://ww2.sanbi.ac.za/Dbases.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The STACKdb is knowledgebase generated by processing EST and mRNA sequences obtained from GenBank through a pipeline consisting of masking, clustering, alignment and variation analysis steps. The STACK project aims to generate a comprehensive representation of the sequence of each of the expressed genes in the human genome by extensive processing of gene fragments to make accurate alignments, highlight diversity and provide a carefully joined set of consensus sequences for each gene. The STACK project is comprised of the STACKdb human gene index, a database of virtual human transcripts, as well as stackPACK, the tools used to create the database. STACKdb is organized into 15 tissue-based categories and one disease category. STACK is a tool for detection and visualization of expressed transcript variation in the context of developmental and pathological states. The data system organizes and reconstructs human transcripts from available public data in the context of expression state. The expression state of a transcript can include developmental state, pathological association, site of expression and isoform of expressed transcript. STACK consensus transcripts are reconstructed from clusters that capture and reflect the growing evidence of transcript diversity. The comprehensive capture of transcript variants is achieved by the use of a novel clustering approach that is tolerant of sub-sequence diversity and does not rely on pairwise alignment. This is in contrast with other gene indexing projects. STACK is generated at least four times a year and represents the exhaustive processing of all publicly available human EST data extracted from GenBank. This processed information can be explored through 15 tissue-specific categories, a disease-related category and a whole-body index
Proper citation: Sequence Tag Alignment and Consensus Knowledgebase Database (RRID:SCR_002156) Copy
http://www.ibiblio.org/dnam/mainpage.html
This site provides access to mutation databases and software including the human hprt database, Human p53 database, Transgenic lacZ database, and Transgenic lacI database. Other avaialble programs include Mutational spectra comparison and relational database data entry. The most recent hprt database contains information on over 2,300 mutations found in vivo and in vitro in the human hprt gene and runs under Windows. The version for evaluation on this homepage has fewer mutations and is a DOS program. The database contains information on the mutagen, dose, spontaneous and induced mutant fraction, base position, amino acid position, amino acid change, local DNA sequence, cell type, citation, and other items. In addition, information regarding the cause and effect of mutations affecting splicing is given. Routines have been developed for the analysis of single base substitutions. The p53 database contains information on nearly 5,867 mutations found in the human p53 gene. The database itself has been updated in April of 1997. The database contains information on the cancer type, loss of heterozygosity, base position, amino acid position, amino acid change, local DNA sequence,citation, and other items. Routines have been developed for the analysis of single base substitutions. The Transgenic lacZ database contains information on 405 mutations found in vivo in the transgenic lacZ gene. It has last been updated in January of 1998. It provides information on the mutagen, dose, organ, mutant fraction, base position, amino acid position, amino acid change, local DNA sequence, citation, and other items. The Transgenic lacI database contains information on over 1700 mutations found in vivo in the transgenic lacI gene and on nearly 8000 mutations in the lacI gene in native E. coli. The database was updated in January 1998. The database contains information on the mutagen, dose, organ, mutant fraction, base position, amino acid position, amino acid change, local DNA sequence, citation, and other items. Routines have been developed for the analysis of single base substitutions for each of the databases. The software runs only on IBM-compatible PCs.
Proper citation: Neal's DNA Mutation Site (RRID:SCR_002947) Copy
The human pathway database which contains different biological entities and reactions and software tools for analysis. PATIKA Database integrates data from several sources, including Entrez Gene, UniProt, PubChem, GO, IntAct, HPRD, and Reactome. Users can query and access this data using the PATIKAweb query interface. Users can also save their results in XML or export to common picture formats. The BioPAX and SBML exporters can be used as part of this Web service.
Proper citation: Pathway Analysis Tool for Integration and Knowledge Acquisition (RRID:SCR_002100) Copy
http://www.loni.ucla.edu/~thompson/thompson.html
The UCLA laboratory of neuroimaging is working in several areas to enhance knowledge of anatomy, including brain mapping in large human populations, HIV, Schizophrenia, methamphetamine, tumor growth and 4d brain mapping, genetics and detection of abnormalities.
Proper citation: University of California at Los Angeles, School of Medicine: Neuro Imaging Lab of Thompson (RRID:SCR_001924) Copy
http://humanconnectome.org/connectome/connectomeDB.html
Data management platform that houses all data generated by the Human Connectome Project - image data, clinical evaluations, behavioral data and more. ConnectomeDB stores raw image data, as well as results of analysis and processing pipelines. Using the ConnectomeDB infrastructure, research centers will be also able to manage Connectome-like projects, including data upload and entry, quality control, processing pipelines, and data distribution. ConnectomeDB is designed to be a data-mining tool, that allows users to generate and test hypotheses based on groups of subjects. Using the ConnectomeDB interface, users can easily search, browse and filter large amounts of subject data, and download necessary files for many kinds of analysis. ConnectomeDB is designed to work seamlessly with Connectome Workbench, an interactive, multidimensional visualization platform designed specifically for handling connectivity data. De-identified data within ConnectomeDB is publicly accessible. Access to additional data may be available to qualified research investigators. ConnectomeDB is being hosted on a BlueArc storage platform housed at Washington University through the year 2020. This data platform is based on XNAT, an open-source image informatics software toolkit developed by the NRG at Washington University. ConnectomeDB itself is fully open source.
Proper citation: ConnectomeDB (RRID:SCR_004830) Copy
The mission of ILAR is to evaluate and disseminate information on issues related to the scientific, technological, and ethical use of animals and related biological resources in research, testing, and education. Using the principles of refinement, reduction, and replacement (3Rs) as a foundation, ILAR promotes high-quality science through the humane care and use of animals and the implementation of alternatives. Through the reports of expert committees, the ILAR Journal, web-based resources, and other means of communication, ILAR functions as a component of the National Academies to provide independent, objective advice to the federal government, the international biomedical research community, and the public. ILAR supports the responsible use of animals in research, testing, and education as a key component to advancing the health and quality of life of humans and animals. It promotes high-quality science and humane care and use of research animals based upon the principles of refinement, replacement, and reduction (the 3Rs) and high ethical standards. It fosters best practices that enhance human and animal welfare by organizing and disseminating information and by facilitating dialogue among interested parties. It has developed a unique Search Engine to search for animal models and strains. This search engine surveys all the websites of vendors and repositories of laboratory animals and biological material on our Links page. The ILAR develops guidelines on laboratory animal care and use and conducts conferences, symposia, and workshops on important laboratory animal problems. ILAR publishes the ILAR Journal on a quarterly basis, as well as conference proceedings and special reports prepared by committees of experts. A list of ILAR publications on issues related to laboratory animal research is available on the Web site. As part of the Animal Models and Genetic Stocks Information Exchange Program, ILAR staff members answer direct telephone and mail inquiries and maintain a Web page containing a database on animal models and genetic stock. The Web site also offers a comprehensive search engine that enables users to find information on the existence and location of special animal models, correct nomenclature to identify animals, and related topics such as diseases of animals and relevant publications. Sponsors: ILAR receives funding from the following sponsors: -Abbott Laboratories -Abbott Fund -American College of Laboratory Animal Medicine (ACLAM) -American Society of Laboratory Animal Practitioners (ASLAP) -Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) -Bristol-Myers Squibb Co. -Charles River -Charles River Laboratories Foundation -Covance -Federation of American Societies for Experimental Biology (FASEB) -GlaxoSmithKline -Merck & Co., Inc. -National Science Foundation (NSF) -Pfizer -Scientists Center for Animal Welfare (SCAW) -U.S. Department of Agriculture (USDA) -U.S. Department of the Army -U.S. Department of Health and Human Services (DHHS) :*National Institutes of Health (NIH) :*Office of Research Integrity (ORI) -U.S. Department of the Navy -U.S. Department of Veterans Affairs -Wellcome Trust -Wyeth Pharmaceuticals
Proper citation: Institute for Laboratory Animal Research (RRID:SCR_006872) Copy
http://www.nimh.nih.gov/news/media/audio/index.shtml
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. Audio and video available from the National Institute of Mental Health (NIMH).
Proper citation: NIMH Multimedia (RRID:SCR_005467) Copy
http://harvester.fzk.de/harvester/
Harvester is a Web-based tool that bulk-collects bioinformatic data on human proteins from various databases and prediction servers. It is a meta search engine for gene and protein information. It searches 16 major databases and prediction servers and combines the results on pregenerated HTML pages. In this way Harvester can provide comprehensive gene-protein information from different servers in a convenient and fast manner. As full text meta search engine, similar to Google trade mark, Harvester allows screening of the whole genome proteome for current protein functions and predictions in a few seconds. With Harvester it is now possible to compare and check the quality of different database entries and prediction algorithms on a single page. Sponsors: This work has been supported by the BMBF with grants 01GR0101 and 01KW0013.
Proper citation: Bioinformatic Harvester IV (beta) at Karlsruhe Institute of Technology (RRID:SCR_008017) Copy
https://www.amazon.com/How-Brain-Works-Mark-Dubin/dp/0632044411
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Is the Brain (Like) a Computer is an e-book written by Prof. Mark Dubin. It consists of the following: Introduction. Why do we consider the relationship of brains and computers and what does this have to do with consciousness? What's a Brain Made Of? A thought experiment. Test Drive a Turing Machine. A theoretical approach. Interim Summary. Many of the main pages have links to additional information. When you click on one of those links a NEW page will open ON TOP of the page you are clicking from. This convention is adopted so that you can look at the additional information and then easily return to the main page you got there from.
Proper citation: Is the Brain (Like) a Computer (RRID:SCR_008809) Copy
http://rarediseases.info.nih.gov/GARD/Default.aspx
Genetic and Rare Diseases Information Center (GARD) is a collaborative effort of two agencies of the National Institutes of Health, The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) to help people find useful information about genetic conditions and rare diseases. GARD provides timely access to experienced information specialists who can furnish current and accurate information about genetic and rare diseases. So far, GARD has responded to 27,635 inquiries on about 7,147 rare and genetic diseases. Requests come not only from patients and their families, but also from physicians, nurses and other health-care professionals. GARD also has proved useful to genetic counselors, occupational and physical therapists, social workers, and teachers who work with people with a genetic or rare disease. Even scientists who are studying a genetic or rare disease and who need information for their research have contacted GARD, as have people who are taking part in a clinical study. Community leaders looking to help people find resources for those with genetic or rare diseases and advocacy groups who want up-to-date disease information for their members have contacted GARD. And members of the media who are writing stories about genetic or rare diseases have found the information GARD has on hand useful, accurate and complete. GARD has information on: :- What is known about a genetic or rare disease. :- What research studies are being conducted. :- What genetic testing and genetic services are available. :- Which advocacy groups to contact for a specific genetic or rare disease. :- What has been written recently about a genetic or rare disease in medical journals. GARD information specialists get their information from: :- NIH resources. :- Medical textbooks. :- Journal articles. :- Web sites. :- Advocacy groups, and their literature and services. :- Medical databases.
Proper citation: Genetic and Rare Diseases Information Center (RRID:SCR_008695) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.