SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.ninds.nih.gov/research/parkinsonsweb/amr/amr_mice_ucla_repository.htm
THIS RESOURCE IS NO LONGER IN SERVICE, documented on April 26, 2011. Information for depositors Investigators who are willing to share mice with the PD research community through this resource should send an email to PDMice_at_ninds.nih.gov describing the mouse. The submission will be reviewed by the PD Models Repository Oversight Committee and, if accepted, a copy of the MTA will be sent by return email. NINDS is most interested in distributing mice that have been characterized in a peer-reviewed publication, but other models will certainly be considered. The email should describe the following: The protocol for identification from tail DNA. The health report of the mice to be shipped (the report has to be less than 2 months old). Information about the strain and any special needs for care and breeding. Information about any publications involving the mice Certification that mice are not encumbered by continuing intellectual property or other rights to any research, data or discovery utilizing the animals. Information for consumers Investigators desiring to study the mice available through the repository should send a request via email to PDMice_at_ninds.nih.gov. Requests will be reviewed by the PD Models Repository Oversight Committee and priority will be determined on a first come, first served basis; two breeding pairs will typically be shipped to any single requester. As detailed in the MTA, mice are not available for commercial research, including but not limited to drug screening. Neither the creator nor UCLA have a role in the governance of the Repository, and specifically, cannot impose conditions upon availability or distribution. It is anticipated that until the Repository is in a mode of steady state production, requests will be collected and mice distributed as supply allows. The email requesting mice should include: A brief description of the protocol Either a copy of the IACUC approval letter or numberNINDS/UCLA Repository for Parkinson's Disease Mouse Models: One of the most immediate and important benefits of discoveries regarding the genetic or environmental causes of Parkinson's disease (PD) is the subsequent development of animal models wherein therapeutic and/or preventative interventions may be studied. The widespread availability of such models is critically important to making progress against a disorder that affects more than 500,000 Americans at any given time. The National Institute of Neurological Disorders and Stroke (NINDS) fully recognizes the burden placed on investigators by the financial and logistical realities of distributing high demand research resources. Some investigators have deposited their mice with national distribution facilities but many mouse models are not available through such resources. Developing means to facilitate greater sharing of mouse models of PD is one of the goals developed by the PD research community at the July 2002 summit meeting convened by the NIH Director. Accordingly, as part of the effort to accelerate PD research, NINDS and the University of California at Los Angeles (UCLA) created a resource that will distribute transgenic mouse models of human PD that are not yet available through national commercial resources. Investigators who are willing to share mice with the PD research community can simply arrange with NINDS to have the mice deposited at UCLA and investigators desiring to study the mice may arrange with NINDS to obtain two breeding pairs. The process will use Material Transfer Agreements created specifically for this arrangement.
Proper citation: NINDS/UCLA Repository for Parkinson's Disease Mouse Models (RRID:SCR_007319) Copy
http://www.cumc.columbia.edu/dept/taub/index.html
An institute which conducts research of Alzheimer's, Parkinson's and other age-related brain diseases. This organization also provides clinical evaluations to patients with memory problems, Alzheimer's disease or other types of dementia. Furthermore, the institute leads multi-center clinical trials for the treatment and prevention of Alzheimer's, Parkinson's and other age-related brain diseases. There is a brain donation program for enrolled/examined patients. The Education Core of the Taub Institute sponsors community events and Continuing Medical Education programs, as well as the distribution of periodic newsletters and brochures highlighting research developments and other Alzheimer's topics.
Proper citation: Taub Institute for Research on Alzheimers Disease and the Aging Brain (RRID:SCR_008802) Copy
An Alzheimer's disease research center which supports new research and enhances ongoing research by providing core support to bringing together behavioral, biomedical, and clinical scientists. The Center conducts multidisciplinary research, trains scientists, and spreads information about Alzheimer's disease and related disorders to the general public. The principal goal of the Massachusetts ADRC is to support research in aging, Alzheimer's Disease and other related disorders. Researchers work with national and international multi-disciplinary teams to understand: normal aging, the transition from normal aging to mild forms of memory problems, and the later stages of dementia. The Massachusetts ADRC has an active brain donation program at the Massachusetts General Hospital (MGH) for patients as well as subjects enrolled in research studies.
Proper citation: Massachusetts Alzheimer's Disease Research Center (RRID:SCR_008764) Copy
http://www.ttuhsc.edu/centers/aging/giabrainbank.aspx
The Brain Bank was developed with two service-minded objectives: provide a free brain autopsy to confirm clinical diagnosis of dementia, and collect, bank and provide brain tissue to qualified scientific researchers studying diseases related to dementia. By working together, patients and researchers can help us understand the origins of neurodegenerative disease and eventually improve the treatment and care of dementia. The clinical diagnosis of Alzheimer's disease can only be confirmed by brain autopsy, or the examination of brain tissue after death. This examination will determine a patients's precise type of dementia. To confirm the diagnosis of Alzheimer's, for example, the brain tissue is examined for amyloid plaques and neurofibrillary tangles by a neuropathologist. The presence of these plaques and tangles will verify the clinical diagnosis of Alzheimer's disease. While it is important to us to enroll patients with dementia, it is equally important to enroll people with no dementia. These subjects are termed as controls and the brain tissue from controls will enable researchers to make comparisons to brain tissue from dementia patients. We are seeking donations from individuals who have had an age-related neurodegenerative disease like Alzheimer's, Parkinson's, Lewy Body or other related dementia.
Proper citation: GIA Brain Bank Program (RRID:SCR_008877) Copy
http://www.med.upenn.edu/cndr/biosamples-brainbank.html
A brain and tissue bank that contains human brain samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD) and other related neurodegenerative dementias and movement disorders. This brain bank serves as a resource for scientists and researchers, providing access to tissue samples for further research. While priority is given to University of Pennsylvania researchers, this bank will provide requests to researchers not associated with the University of Pennsylvania. This tissue bank accepts donations from those seeing a University of Pennsylvania physician or collaborator.
Proper citation: University of Pennslyvania Brain Bank (RRID:SCR_008820) Copy
http://mayoresearch.mayo.edu/mayo/research/udall_center/
A research program associated with bringing together researchers from various disciplines to study the genetic and molecular basis of Parkinson's disease. The program focuses on epidemiological and longitudinal studies of Parkinson's disease, dementia with Lewy bodies, and aging and dementia. It also provides clinical materials for other research projects. This program provides faculty research funds, invited speaker seminar series, sponsorship of movement disorder fellowships, pilot research grants, and support for faculty travel to promote intra-institutional collaborations.
Proper citation: Udall Center of Excellence in Parkinson's Disease Research (RRID:SCR_008778) Copy
Common data management resource and web portal to promote discovery of Parkinson's Disease diagnostic and progression biomarker candidates for early detection and measurement of disease progression. PDBP will serve as multi-faceted platform for integrating existing biomarker efforts, standardizing data collection and management across these efforts, accelerating discovery of new biomarkers, and fostering and expanding collaborative opportunities for all stakeholders.
Proper citation: Parkinson’s Disease Biomarkers Program Data Management Resource (PDBP DMR) (RRID:SCR_002517) Copy
A collection of images of the human nervous system focusing on disease and injury.
Proper citation: Human Nervous System Disease and Injury (RRID:SCR_006370) Copy
https://scicrunch.org/kravitz2
Dataset of the spike and laser timestamps from Kravitz, Owen and Kretizer's 2012 paper "Optogenetic identification of striatal projection neuron subtypes during in vivo recordings." The code will analyze spike trains around laser pulses to determine if a cell is significantly activated by the laser, and therefore expresses an excitatory opsin, such as channelrhodopsin-2. It returns an excel sheet that simply identifies the activated cells.
Proper citation: Kravitz Dataset 2 (RRID:SCR_000296) Copy
http://www.radiology.ucsf.edu/cind
Biomedical technology research center that develops and validates new imaging methods for detecting brain abnormalities in neurodegenerative diseases, including Alzheimer's disease, vascular dementia, frontotemporal dementia, Parkinson's disease, as well as epilepsy, depression, and other conditions associated with nerve loss in the brain. As people around the globe live longer, the impact of neurodegenerative diseases is expected to increase further with dire social and economical consequences for societies if no effective treatments are developed soon. The development at CIND is aimed to improve magnetic resonance imaging (MRI). The ultimate goal of the scientific program is to identify imaging markers that improve accuracy in diagnosing neurodegenerative diseases at early stages, achieve more reliable prognoses of disease progression, and facilitate the discovery of effective treatment interventions. In addition to addressing the general needs for studying neurodegenerative diseases, another focus of CIND concerns brain diseases associated with military service and war combat, such as post traumatic stress disorder (PTSD), brain trauma, gulf war illness and the long-term effects of these conditions on the mental health of veterans. The symbiosis between CIND and the Veterans Administration Medical Center in San Francisco makes this program uniquely suited to serve military veterans.
Proper citation: Center for Imaging of Neurodegenerative Diseases (RRID:SCR_001968) Copy
Ratings or validation data are available for this resource
NDRI is a Not-For-Profit (501c3) Corporation dedicated to providing the highest quality human biomaterials for research. NDRI makes it easy for researchers to get the human tissues and organs they need, prepared, preserved and shipped precisely according to their specific scientific protocols, as quickly as possible, and in the largest available quantities. NDRI provides researchers with protocol specific human neurological tissues such as brain stem, spinal cord, and basal ganglia, among others. In addition to control specimens, NDRI recovers tissues from donors with a variety of diseases, including Down syndrome, Parkinsons disease, Alzheimers disease, schizophrenia, and dementia. Through the NDRI 24/7 referral and procurement system, research consented biospecimens can be provided from low post mortem interval donors preserved at 4ºC, frozen or snap frozen, fixed, paraffin embedded, or as unstained slides.
Proper citation: National Disease Research Interchange (RRID:SCR_000550) Copy
http://www.ucl.ac.uk/ion/departments/molecular/themes/neurodegeneration/brainbank
A brain bank which holds an archive of brains donated by individuals with neurodegenerative disease and others who serve as neurologically normal controls. It specializes in parkinsonian movement disorders, including Parkinson's disease and multiple system atrophy, and holds the national collection of brains donated by individuals with progressive supranuclear palsy (PSP). Recently the collection has been developed to include donated brains from prospectively studied people with familial dementias. The QSBB also banks brains donated by people with dystonia and Gilles de la Tourette syndrome. The Brain Bank aims to provide brain tissue for neuropathological studies and for scientific research both in the UK and worldwide. The large collection of tissue is backed up by clinical documentation and all material is fully evaluated by the neuropathologists at QSBB. Brain tissue is stored as formalin-fixed, wax embedded blocks and is frozen, either at -20 degrees C or at -80 degrees C (flash-frozen). Tissue can be provided as slide-mounted sections, or as small blocks for neurochemistry, proteomics and DNA and RNA analysis. Flash-frozen material has excellent histological preservation and is suitable for in situ hybridization and immunohistochemistry. Case-control studies are matched for post-mortem delay and agonal status and are supplied blind.
Proper citation: Queen Square Brain Bank (RRID:SCR_004652) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 28,2022. A network of several university centers in Germany that classifies neurological and psychiatric disorders neuropathologically and collects and provides brain tissue for research. The aim and task of the Brain-Net are: the collection of clinically and neuropathologically well-characterized brain tissue samples; the standardization of neuropathological diagnoses according to internationally accepted criteria; and providing a basis for future research projects using genetic, epidemiological, biometric and other issues to neurological and psychiatric disorders.
Proper citation: Brain-Net (RRID:SCR_005017) Copy
http://med.brown.edu/neurology/brainbank/index.html
A tissue resource center which facilitates research into the relationship between Alzheimer's disease and other brain disorders such as strokes and mental illnesses. Most donations have been obtained from Alzheimer's patients. Normal controls are available, many of which are from subjects with close relatives with Alzheimer's. The Brown BTRC also supports a collection of brain tumor cases that were harvested from patients who underwent surgery and who were enrolled in a clinical trial for the development of new treatments for brain cancer.
Proper citation: Brown Brain Tissue Resource Center (RRID:SCR_005392) Copy
http://www.loni.usc.edu/BIRN/Projects/Mouse/
Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.
Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy
http://www.brainbank.mclean.org/
Biomaterial supply resource that acquires, processes, stores, and distributes postmortem brain specimens for brain research. Various types of brain tissue are collected, including those with neurological and psychiatric disorders, along with their parents, siblings and offspring. The HBTRC maintains an extensive collection of postmortem human brains from individuals with Huntington's chorea, Alzheimer's disease, Parkinson's disease, and other neurological disorders. In addition, the HBTRC also has a collection of normal-control specimens.
Proper citation: Harvard Brain Tissue Resource Center (RRID:SCR_003316) Copy
http://national_databank.mclean.org
THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. A publicly accessible data repository to provide neuroscience investigators with secure access to cohort collections. The Databank collects and disseminates gene expression data from microarray experiments on brain tissue samples, along with diagnostic results from postmortem studies of neurological and psychiatric disorders. All of the data that is derived from studies of the HBTRC collection is being incorporated into the National Brain Databank. This data is available to the general public, although strict precautions are undertaken to maintain the confidentiality of the brain donors and their family members. The system is designed to incorporate MIAME and MAGE-ML based microarray data sharing standards. Data from various types of studies conducted on brain tissue in the HBTRC collection will be available from studies using different technologies, such as gene expression profiling, quantitative RT-PCR, situ hybridization, and immunocytochemistry and will have the potential for providing powerful insights into the subregional and cellular distribution of genes and/or proteins in different brain regions and eventually in specific subregions and cellular subtypes.
Proper citation: National Brain Databank (RRID:SCR_003606) Copy
MATLAB toolbox for deep-brain-stimulation (DBS) electrode reconstructions and visualizations based on postoperative MRI and computed tomography (CT) imaging. The toolbox also facilitates visualization of localization results in 2D/3D, analysis of DBS-electrode placement's effects on clinical results, simulation of DBS stimulations, diffusion tensor imaging (DTI) based connectivity estimates, and fiber-tracking from the VAT to other brain regions (connectomic surgery).
Proper citation: LEAD-DBS (RRID:SCR_002915) Copy
http://ccr.coriell.org/Sections/Collections/NINDS/?SsId=10
Open resource of biological samples (DNA, cell lines, and other biospecimens) and corresponding phenotypic data to promote neurological research. Samples from more than 34,000 unique individuals with cerebrovascular disease, dystonia, epilepsy, Huntington's Disease, motor neuron disease, Parkinsonism, and Tourette Syndrome, as well as controls (population control and unaffected relatives) have been collected. The mission of the NINDS Repository is to provide 1) genetics support for scientists investigating pathogenesis in the central and peripheral nervous systems through submissions and distribution; 2) information support for patients, families, and advocates concerned with the living-side of neurological disease and stroke.
Proper citation: NINDS Repository (RRID:SCR_004520) Copy
A cell repository containing cells and DNA for studies of aging and the degenerative processes associated with it. Scientists use the highly-characterized, viable, and contaminant-free cell cultures from this collection for research on such diseases as Alzheimer's disease, progeria, Parkinson's disease, Werner syndrome, and Cockayne syndrome. The collections of the Repository include DNA and cell cultures from individuals with premature aging disorders, as well as DNA from individuals of advanced age from the the Baltimore Longitudinal Study of Aging at the Gerontology Research Center and other Longevity Collections. The Repository also includes samples from an Adolescent Study of Obesity, Apparently Healthy Controls, Animal Models of Aging, and both human and animal differentiated cell types. The cells in this resource have been collected over the past three decades using strict diagnostic criteria and banked under the highest quality standards of cell culture. Scientists can use the highly-characterized, viable, and contaminant-free cell cultures from this collection for genetic and cell biology research.
Proper citation: Aging Cell Repository (RRID:SCR_007320) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.