Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 293 results
Snippet view Table view Download 293 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_000400

    This resource has 1+ mentions.

http://www.ncbi.nlm.nih.gov/dbSTS/

THIS RESOURCE IS NO LONGER IN SERVICE, as of October 1, 2013; however, the site is still accessible. NCBI resource that contains sequence and mapping data on short genomic landmark sequences or Sequence Tagged Sites. STS sequences are incorporated into the STS Division of GenBank. The dbSTS database offers a route for submission of STS sequences to GenBank. It is designed especially for the submission of large batches of STS sequences.

Proper citation: dbSTS (RRID:SCR_000400) Copy   


  • RRID:SCR_003255

    This resource has 10+ mentions.

http://ndbserver.rutgers.edu/

A database of three-dimensional structural information about nucleic acids and their complexes. In addition to primary data, it contains derived geometric data, classifications of structures and motifs, standards for describing nucleic acid features, as well as tools and software for the analysis of nucleic acids. A variety of search capabilities are available, as are many different types of reports. NDB maintains the macromolecular Crystallographic Information File (mmCIF).

Proper citation: Nucleic Acid Database (RRID:SCR_003255) Copy   


http://www.mitomap.org/

Database of polymorphisms and mutations of the human mitochondrial DNA. It reports published and unpublished data on human mitochondrial DNA variation. All data is curated by hand. If you would like to submit published articles to be included in mitomap, please send them the citation and a pdf.

Proper citation: MITOMAP - A human mitochondrial genome database (RRID:SCR_002996) Copy   


http://mistdb.com

Database which contains the signal transduction proteins for complete and draft bacterial and archaeal genomes. The MiST2 database identifies and catalogs the repertoire of signal transduction proteins in microbial genomes.

Proper citation: MiST - Microbial Signal Transduction database (RRID:SCR_003166) Copy   


https://www.portal.brain-bican.org/

Provides molecular and anatomical foundational framework for study of brain function and disorders.Comprehensive Center on Human and Non-Human Primate Brain Cell Atlases with goal to build reference brain cell atlases that will be used throughout research community.

Proper citation: BRAIN Initiative Cell Atlas Network (RRID:SCR_022794) Copy   


http://www.lamhdi.org/

THIS RESOURCE IS NO LONGER IN SERVICE, it has been replaced by Monarch Initiative. LAMHDI, the initiative to Link Animal Models to Human DIsease, is designed to accelerate the research process by providing biomedical researchers with a simple, comprehensive Web-based resource to find the best animal model for their research. LAMDHI is a free, Web-based, resource to help researchers bridge the gap between bench testing and human trials. It provides a free, unbiased resource that enables scientists to quickly find the best animal models for their research studies. LAMHDI includes mouse data from MGI, the Mouse Genome Informatics website; zebrafish data from ZFIN, the Zebrafish Model Organism Database; rat data from RGD, the Rat Genome Database; yeast data from SGD, the Saccharomyces Genome Database; and fly data from FlyBase. LAMHDI.org is operational today, and data is added regularly. Enhancements are planned to let researchers contribute their knowledge of the animal models available through LAMHDI. The LAMHDI goal is to allow researchers to share information about and access to animal models so they can refine research and testing, and reduce or replace the use of animal models where possible. LAMHDI Database Search: LAMHDI brings together scientifically validated information from various sources to create a composite multi-species database of animal models of human disease. To do this, the LAMHDI database is prepared from a variety of sources. The LAMHDI team takes publicly available data from OMIM, NCBI''s Entrez Gene database, Homologene, and WikiPathways, and builds a mathematical graph (think of it as a map or a web) that links these data together. OMIM is used to link human diseases with specific human genes, and Entrez provides universal identifiers for each of those genes. Human genes are linked to their counterpart genes in other species with Homologene, and those genes are linked to other genes tentatively or authoritatively using the data in WikiPathways. This preparatory work gives LAMHDI a web of human diseases linked to specific human genes, orthologous human genes, homologous genes in other species, and both human and non-human genes involved in specific metabolic pathways associated with those diseases. LAMHDI includes model data that partners provide directly from their data structures. For instance, MGI provides information about mouse models, including a disease for each model, as well as some genetic information (the ID of the model, in fact, identifies one or more genes). ZFIN provides genetic information for each zebrafish model, but no diseases, so zebrafish models are integrated by using the genes as the glue. For instance, a zebrafish model built to feature the zebrafish PKD2 gene would plug into the larger disease-gene map at the node representing the zebrafish PKD2 gene, which is connected to the node representing the human PKD2 gene, which in turn is connected to the node representing the human disease known as polycystic kidney disease. (Some of the partner data LAMHDI receives can even extend the base map. MGI provides a disease for every model, and in some cases this allows the creation of a disease-to-gene relationship in the LAMHDI database that might not already be documented in the OMIM dataset.) With curatorial and model information in hand, LAMHDI runs a lengthy automated process that exhaustively searches for every possible path between each model and each disease in the data, up to a set number of hops, producing for each disease-to-model pair a set of links from the disease to the model. The algorithm avoids circular paths and paths that include more than one disease anywhere in the middle of the path. At the end of this phase, LAMHDI has a comprehensive set of paths representing all the disease-to-model relationships in the data, varying in length from one hop to many hops. Each disease-to-model path is essentially a string of nodes in the data, where each node represents a disease, a gene, a linkage between genes (an orthologue, a homologue, or a pathway connection, referred to as a gene cluster or association), or a model. Each node has a human-friendly label, a set of terms and keywords, and - in most cases - a URL linking the node to the data source where it originated. When a researcher submits a search on the LAMHDI website, LAMHDI searches for the user''s search terms in its precomputed list of all known disease-to-model paths. It looks for the terms not only in the disease and model nodes, but also in every node along each path. The complete set of hits may include multiple paths between any given disease-to-model pair of endpoints. Each of these disease-to-model pair sets is ordered by the number of hops it involves, and the one involving the fewest hops is chosen to represent its respective disease-to-model pair in the search results presented to the user. Results are sorted by scores that represent their matches. The number of hops is one barometer of the strength of the evidence linking the model and the disease; fewer hops indicates the relationship is stronger, more hops indicates it may be weaker. This indicator works best for comparing models from a single partner dataset: MGI explicitly identifies a disease for each mouse model, so there can be disease-to-model hits for mice that involve just one hop. Because ZFIN does not explicitly identify a disease for each model, no zebrafish model will involve fewer than four hops to the nearest disease, from the zebrafish model to a zebrafish gene to a gene cluster to a human gene to a human disease.

Proper citation: LAMHDI: The Initiative to Link Animal Models to Human DIsease (RRID:SCR_008643) Copy   


  • RRID:SCR_010489

    This resource has 1+ mentions.

https://www.tycho.pitt.edu/

Database to advance the availability and use of public health data for science and policy making that includes data from all weekly notifiable disease reports for the United States dating back to 1888. Additional U.S. and international data will be released twice yearly.

Proper citation: Project Tycho (RRID:SCR_010489) Copy   


https://www.ohsu.edu/custom/library/digital-collections/projectionmap

Data set of thalamo-centric mesoscopic projection maps to the cortex and striatum. The maps are established through two-color, viral (rAAV)-based tracing images and high throughout imaging.

Proper citation: Mouse Thalamic Projectome Dataset (RRID:SCR_015702) Copy   


  • RRID:SCR_013700

    This resource has 100+ mentions.

https://www.nanomaterialregistry.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 9,2023. Registry that archives curated nanomaterial research data and their biological and environmental implications. The Registry provides data management plans for researchers, and accepts users' public-ready data, archive them, integrate them into the registry, allowing for the data to be shared publicly. Users can request more information on specific nanomaterial records, compare multiple nanomaterials, and export data to their desktop.

Proper citation: Nanomaterial Registry (RRID:SCR_013700) Copy   


https://astrocyte.rnaseq.sofroniewlab.neurobio.ucla.edu

Database containing information about RNA-sequencing and astrocyte reactivity. Searching a gene through this engine provides differential expression data for various experimental conditions.

Proper citation: Astrocyte Reactivity RNA-Seq Browser (RRID:SCR_015033) Copy   


  • RRID:SCR_025438

https://cellarium.ai

Software platform to annotate cell types.

Proper citation: Cellarium (RRID:SCR_025438) Copy   


  • RRID:SCR_001473

http://www.sfn.org/SiteObjects/published/0000BDF20016F63800FD712C30FA42DD/1304F8BE908CE526359306C138737F9F/file/NRF%20Contacts.pdf

This resource provides a list of federal program officials in the neurosciences. An informal compendium of names and contact information for nearly 300 research grant and scientific review administrators in 21 organizational units.

Proper citation: NRF Contacts (RRID:SCR_001473) Copy   


  • RRID:SCR_001808

    This resource has 10+ mentions.

http://www.nesys.uio.no/Atlas3D/

A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.

Proper citation: Atlas3D (RRID:SCR_001808) Copy   


http://www.essentialtremor.us/

Finding a cure for any neurological disorder begins with the scientific study of the disorder''s causes, processes, and development in the brain. For essential tremor (ET), rigorous study of this kind had not been undertaken until 2003, when the Essential Tremor Centralized Brain Repository (ETCBR) was established at Columbia University. For the past five years, brain tissue from ET donors has been collected, processed and compared alongside age-matched control brains at the ETCBR, and already several significant findings have been made. However, there is still much to learn and a severe shortage of ET brains for scientific study. If you have been diagnosed with essential tremor, donating your brain tissue in the hours immediately after your death is of utmost importance in providing crucial information about what causes ET. Direct analysis of the shape and number of nerve cells and their content will provide medical researchers with the information they need in order to understand this complex illness. By advancing our medical knowledge of ET, the gift of brain tissue is a central piece of the puzzle in the search to develop better treatments and find a cure.

Proper citation: Essential Tremor Centralized Brain Repository (RRID:SCR_004464) Copy   


http://www.na-mic.org/

The National Alliance for Medical Image Computing (NA-MIC) is a multi-institutional, interdisciplinary team of computer scientists, software engineers, and medical investigators who develop computational tools for the analysis and visualization of medical image data. The purpose of the Center is to provide the infrastructure and environment for the development of computational algorithms and open-source technologies, and then oversee the training and dissemination of these tools to the medical research community. Electronic resources provided by NA-MIC include software, data, tutorials, presentations, and more.

Proper citation: National Alliance for Medical Image Computing (RRID:SCR_004460) Copy   


  • RRID:SCR_004690

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/biosystems/

Database that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.

Proper citation: NCBI BioSystems Database (RRID:SCR_004690) Copy   


http://www.hmpdacc.org/

Common repository for diverse human microbiome datsets and minimum reporting standards for Common Fund Human Microbiome Project.

Proper citation: HMP Data Analysis and Coordination Center (RRID:SCR_004919) Copy   


http://science.education.nih.gov/home2.nsf/feature/index.htm

The NIH Office of Science Education (OSE) coordinates science education activities at the NIH and develops and sponsors science education projects in house. These programs serve elementary, secondary, and college students and teachers and the public. Activities * Develop curriculum supplements and other educational materials related to medicine and research through collaborations with scientific experts at NIH * Maintain a website as a central source of information about NIH science education resources * Establish national model programs in public science education, such as the NIH Mini-Med School and Science in the Cinema * Promote science education reform as outlined in the National Science Education Standards and related guidelines The OSE was established in 1991 within the Office of Science Policy of the Office of the Director of the National Institutes of Health. The NIH is the world''s foremost biomedical research center and the U.S. federal government''s focal point for such research. It is one of the components of the Department of Health and Human Services (HHS). The Office of Science Education (OSE) plans, develops, and coordinates a comprehensive science education program to strengthen and enhance efforts of the NIH to attract young people to biomedical and behavioral science careers and to improve science literacy in both adults and children. The function of the Office is as follows: (1) develops, supports, and directs new program initiatives at all levels with special emphasis on targeting students in grades kindergarten to 16, their educators and parents, and the general public; (2) advises NIH leadership on science education issues; (3) examines and evaluates research and emerging trends in science education and literacy for policy making; (4) works closely with the NIH extramural, intramural, women''s health, laboratory animal research, and minority program offices on science education special issues and programs to ensure coordination of NIH efforts; (5) works with NIH institutes, centers, and divisions to enhance communication of science education activities; and (6) works cooperatively with other public- and private-sector organizations to develop and coordinate activities.

Proper citation: NIH Office of Science Education (RRID:SCR_005603) Copy   


  • RRID:SCR_005474

    This resource has 1+ mentions.

http://primegens.org/

A Web-based Tool for High-throughput Primer and Probe Design. The program has its different utilities available on its web server. A standalone version is also available. Algorithms: * SSPD - Sequence Specific Primer Design: to design primers for each of the specific sequences given by the user in the query input file against any alternate potential hybridization with any of the sequences given in the database input file. * PSPD - Probe Specific Primer Design: to design primers it selects the gene-specific fragments (probes) to design primer pairs for their PCR amplification. * FSPD Fragment Specific Primer Design: primer design algorithm used when there is a very long query sequence for which multiple primers are required for its amplification. * Check Binding Specificity * Probe Design Only: Probe design algorithm could be used to find sequence-specific probes, which doesn''t show any blast hit against database. Such probe design has been used for targeted sequencing like agilent sure-select technology with next-generation sequencing.

Proper citation: PRIMEGENS (RRID:SCR_005474) Copy   


  • RRID:SCR_005233

    This resource has 1+ mentions.

http://gds.nih.gov/

NIH established expectations for sharing data obtained through NIH-funded genome-wide association studies (GWAS) with the implementation of the GWAS Policy. Information and resources related to the GWAS Policy can be found on this website.

Proper citation: Genomic Datasharing (RRID:SCR_005233) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X