SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Biomedical technology research center that develops and integrates new proteomic technologies for collaborative and service studies, disseminating the new technologies and training scientists in their use.
Proper citation: Proteomics Research Center for Integrative Biology (RRID:SCR_001098) Copy
http://anya.igsb.anl.gov/Geneways/GeneWays.html
System for automatically extracting, analzying, visualizing and integrating molecular pathway data from the research literature. System focuses on interactions between molecular substances and actions, providing a graphical consensus view on the collected information. GeneWays is designed as open platform, allowing researchers to query, review and critique integrated information.
Proper citation: GeneWays (RRID:SCR_000572) Copy
Biomedical technology research center that conducts, catalyzes and enables multiscale biomedical research, focusing on four key activities: 1) integrating computational, data and visualization resources in a transparent, advanced grid environment to enable better access to distributed data, computational resources, instruments and people; 2) developing and deploying advanced computational tools for modeling and simulation, data analysis, query and integration, three-dimensional image processing and interactive visualization; 3) delivering and supporting advanced grid/cyberinfrastructure for biomedical researchers; and 4) training a cadre of new researchers to have an interdisciplinary, working knowledge of computational technology relevant to biomedical scientists. NBCR enables biomedical scientists to address the challenge of integrating detailed structural measurements from diverse scales of biological organization that range from molecules to organ systems in order to gain quantitative understanding of biological function and phenotypes. Predictive multi-scale models and their driving biological research problems together address issues in modeling of sub-cellular biophysics, building molecular modeling tools to accelerate discovery, and defining tools for patient-specific multi-scale modeling. NBCR furthers these driving problems by developing tools and models based on rapid advances in mathematics and information technology, incorporating them into NBCR pipelines or problem solving environments, and addressing the inevitable changes in the underlying cyber-infrastructure technologies and continually adapting codes over time. Their technology focus integrates both the biological applications and the underlying support software into reproducible science workflows that can function across a number of physical infrastructures.
Proper citation: National Biomedical Computation Resource (RRID:SCR_002656) Copy
Biomedical technology research center that develops computer-aided, advanced microscopy for the acquisition of structural and functional data in the dimensional range of 1 nm to 100 um, a range encompassing macromolecules, subcellular structures and cells. Novel specimen-staining methods, imaging instrumentsincluding intermediate high-voltage transmission electron microscopes (IVEMs) and high-speed, large-format laser-scanning light microscopesand computational capabilities are available for addressing mesoscale biological microscopy of proteins and macromolecular complexes in their cellular and tissue environments. These technologies are developed to bridge understanding of biological systems between the gross anatomical and molecular scales and to make these technologies broadly available to biomedical researchers. NCMIR provides expertise, infrastructure, technological development, and an environment in which new information about the 3D ultrastructure of tissues, cells, and macromolecular complexes may be accurately and easily obtained and analyzed. NCMIR fulfills its mission through technology development, collaboration, service, training, and dissemination. It aims to develop preparative methods and analytical approaches to 3D microscopy applicable to neurobiology and cell biology, incorporating equipment and implementing software that expand the analysis of 3D structure. The core research activities in the areas of specimen development, instrument development, and software infrastructures maximize the advantages of higher voltage electron microscopy and correlated light microscopies to make ambitious imaging studies across scales routine, and to facilitate the use of resources by biomedical researchers. NCMIR actively recruits outside users who will not only make use of these resources, but who also will drive technology development and receive training.
Proper citation: National Center for Microscopy and Imaging Research (RRID:SCR_002655) Copy
http://www.macchess.cornell.edu/
MacCHESS Synchrotron Source for Structural Biology advances structural characterization of proteins and biomolecules critical for understanding key biological processes and properties through leveraging both established and emerging X-ray synchrotron technologies. Used to collect data that comprises all or part of research programs.
Proper citation: MacCHESS (RRID:SCR_001443) Copy
http://bowtie-bio.sourceforge.net/recount/
RNA-seq gene count datasets built using the raw data from 18 different studies. The raw sequencing data (.fastq files) were processed with Myrna to obtain tables of counts for each gene. For ease of statistical analysis, they combined each count table with sample phenotype data to form an R object of class ExpressionSet. The count tables, ExpressionSets, and phenotype tables are ready to use and freely available. By taking care of several preprocessing steps and combining many datasets into one easily-accessible website, we make finding and analyzing RNA-seq data considerably more straightforward.
Proper citation: ReCount - A multi-experiment resource of analysis-ready RNA-seq gene count datasets (RRID:SCR_001774) Copy
Biomedical technology research center that develops novel cellular imaging technologies, specifically soft X-ray tomography, for visualizing and quantifying the internal structure of whole, hydrated cells, and high-numerical aperture fluorescence microscopy for locating the position of specific cellular molecules. Data from these two imaging modalities can be combined to form a single, correlated imaging view of a cell.
Proper citation: National Center for X-ray Tomography (RRID:SCR_001433) Copy
http://mus.well.ox.ac.uk/mouse/INBREDS/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2025. Data set of genotypes available for 480 strains and 13370 successful SNP assays that are mapped to build34 of the mouse genome, including 107 SNPs that are mapped to random unanchored sequence 13374 SNPs are mapped onto Build 33 of the mouse genome. You can access the data relative to Build 33 or Build 34.
Proper citation: Wellcome-CTC Mouse Strain SNP Genotype Set (RRID:SCR_003216) Copy
http://www.mc.vanderbilt.edu/root/vumc.php?site=ims
Biomedical technology research center that advances the technology of Imaging Mass Spectrometry, facilitates the application of this novel imaging modality to problems of biological and clinical significance, and promotes the adoption of these technologies by a larger community of scientists and clinicians. Technical innovations include next-generation hardware, software and methods. Technology development is conducted by an interdisciplinary team of scientists and engineers, both within the Resource and through collaborative relationships with other universities, research institutes, and private industry. Development milestones are guided by Driving Biological Projects that require specific advancements in Imaging Mass Spectrometry in order to address biological problems. By working together, they anticipate new insights into these biological systems and a better understanding of health and disease at the molecular level that translates to improved patient care. The training mission of the Resource is accomplished through a variety of educational programs where Resource scientists and collaborators share their knowledge and experience with those interested in learning more about the technology.
Proper citation: VU National Research Resource for Imaging Mass Spectrometry (RRID:SCR_006904) Copy
http://dockground.bioinformatics.ku.edu/
Data sets, tools and computational techniques for modeling of protein interactions, including docking benchmarks, docking decoys and docking templates. Adequate computational techniques for modeling of protein interactions are important because of the growing number of known protein 3D structures, particularly in the context of structural genomics. The first release of the DOCKGROUND resource (Douguet et al., Bioinformatics 2006; 22:2612-2618) implemented a comprehensive database of cocrystallized (bound) protein-protein complexes in a relational database of annotated structures. Additional releases added features to the set of bound structures, such as regularly updated downloadable datasets: automatically generated nonredundant set, built according to most common criteria, and a manually curated set that includes only biological nonobligate complexes along with a number of additional useful characteristics. Also included are unbound (experimental and simulated) protein-protein complexes. Complexes from the bound dataset are used to identify crystallized unbound analogs. If such analogs do not exist, the unbound structures are simulated by rotamer library optimization. Thus, the database contains comprehensive sets of complexes suitable for large scale benchmarking of docking algorithms. Advanced methodologies for simulating unbound conformations are being explored for the next release. The Dockground project is developed by the Vakser lab at the Center for Bioinformatics at the University of Kansas. Parts of Dockground were co-developed by Dominique Douguet from the Center of Structural Biochemistry (INSERM U554 - CNRS UMR5048), Montpellier, France.
Proper citation: Dockground: Benchmarks, Docoys, Templates, and other knowledge resources for DOCKING (RRID:SCR_007412) Copy
http://lab.rockefeller.edu/chait/
Biomedical technology research center that develops cutting-edge mass spectrometric tools for analyzing peptides and proteins. It makes its software tools developed for data analysis freely available.
Proper citation: National Resource for the Mass Spectrometric Analysis of Biological Macromolecules (RRID:SCR_009007) Copy
Biomedical technology research center that develops and makes available to the scientific community high performance computing algorithms, tools and software to leverage modeling efforts at disparate scales of structural biology, cellular microphysiology and large-scale bioimage processing and analysis, with the goal of advancing understanding of the molecular and cellular organization and functional mechanisms that underlie synaptic signaling and regulation.
Proper citation: National Center for Multiscale Modeling of Biological Systems (RRID:SCR_009005) Copy
Provides high-performance tandem mass spectrometry and proteomics, including multiplexed quantitative comparative analysis of protein and post-translational modifications, and a suite of tools for the analysis of mass spectrometry proteomics data. It provides both scientific and technical expertise and state-of-the-art high-performance, tandem mass spectrometric instrumentation. The facility also provides a service for small molecule analysis. Significant instrumentation in the facility includes three QSTAR quadrupole orthogonal time of flight instruments, and both an LTQ-Orbitrap platform with electron transfer dissociation (ETD) and an LTQ-FT linear ion trap FT-ICR instrument equipped with the ability to perform electron capture dissociation (ECD). The Center also has a 4700 Proteomic Analyzer MALDI tandem time of flight instrument; as well as a QTRAP 5500 hybrid triple quadrupole linear ion trap instrument; and a Thermo Fisher LTQ Orbitrap Velos. Major research focuses within the Center are the analysis of post-translational modifications, including phosphorylation and O-GlcNAcylation and development of methods for quantitative comparative analysis of protein and post-translational modification levels. The program also continues to develop one of the leading suites of tools for analysis of mass spectrometry proteomics data, Protein Prospector. The current web-based release allows unrestricted searching of MS and MSMS data, as well as the ability to perform comparative quantitative analysis of samples using isotopic-labeling reagents. It is the only freely-available web-based resource that allows this type of analysis.
Proper citation: National Bio-Organic Biomedical Mass Spectrometry Resource Center (RRID:SCR_009004) Copy
http://scicrunch.org/resources
Portal providing identifiers for Antibodies, Model Organisms, and Tools (software, databases, services) created in support of the Resource Identification Initiative, which aims to promote research resource identification, discovery, and reuse. The portal offers a central location for obtaining and exploring Research Resource Identifiers (RRIDs) - persistent and unique identifiers for referencing a research resource. A critical goal of the RII is the widespread adoption of RRIDs to cite resources in the biomedical literature and other places that reference their generation or use. RRIDs use established community identifiers where they exist, and are cross-referenced in their system where more than one identifier exists for a single resource.
Proper citation: Resource Identification Portal (RRID:SCR_004098) Copy
http://web.mit.edu/glycomics/gt/gtdb.shtml
A pathway-based graphical interface for navigating the glycoenzyme database. The goal of the project is to define the paradigms by which carbohydrate binding proteins function in cellular communication. These pages are divided into six categories: -Glycosphingolipid: Sub-categories are Isogloboseries, Globoseries, Neo-lactoseries, Lactoseries and Ganglioseries - N-linked: Sub-categories are High-mannose, Hybrid and Complex -Mucin -Terminal Core 1 -Other O-linked -Terminal All: Includes all potential terminal structures for each glycan category
Proper citation: Glycosylation Pathways Database (RRID:SCR_013486) Copy
http://web.stanford.edu/group/barres_lab/brain_rnaseq.html
Database containing RNA-Seq transcriptome and splicing data from glia, neurons, and vascular cells of cerebral cortex. Collection of RNA-Seq transcriptome and splicing data from glia, neurons, and vascular cells of mouse cerebral cortex. RNA-Seq of cell types isolated from mouse and human brain.
Proper citation: Brain RNA-Seq (RRID:SCR_013736) Copy
http://hb.flatironinstitute.org/
Formerly known as GIANT (Genome-scale Integrated Analysis of gene Networks in Tissues), HumanBase applies machine learning algorithms to learn biological associations from massive genomic data collections. These integrative analyses reach beyond existing "biological knowledge" represented in the literature to identify novel, data-driven associations.
Proper citation: HumanBase (RRID:SCR_016145) Copy
http://www.broadinstitute.org/pubs/MitoCarta/
Collection of genes encoding proteins with strong support of mitochondrial localization. Inventory of genes encoding mitochondrial-localized proteins and their expression across 14 mouse tissues. Database is based on human and mouse RefSeq proteins that are mapped to NCBI Gene loci. MitoCarta 2.0 inventory provides molecular framework for system-level analysis of mammalian mitochondria.
Proper citation: MitoCarta (RRID:SCR_018165) Copy
http://software.broadinstitute.org/gsea/msigdb/index.jsp
Collection of annotated gene sets for use with Gene Set Enrichment Analysis (GSEA) software.
Proper citation: Molecular Signatures Database (RRID:SCR_016863) Copy
http://publications.nigms.nih.gov/insidelifescience/
The NIGMS Inside Life Science series brings you inside the science of health. Each story shows how basic biomedical researchfrom the history of a field to the people doing cutting-edge work todaylays the foundation for advances in disease diagnosis, treatment and prevention. Through explorations of how the body works and highlights from recent studies, you''ll discover even more on what scientists have found and are finding about fundamental life processes. NIGMS supported all of the featured research.
Proper citation: NIGMS Inside Life Science (RRID:SCR_005852) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.