Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 12 showing 221 ~ 240 out of 686 results
Snippet view Table view Download 686 Result(s)
Click the to add this resource to a Collection

https://cfn.upenn.edu/~zewang/BENtbx.php

A toolkit for mapping brain entropy using fMRI. It uses several functions from ASLtbx. At its core, the toolkit is a collection of batch scripts that implement a pipeline for processing fMRI data in order to get Sample entropy for each voxel.

Proper citation: Brain Entropy Mapping Toolbox (RRID:SCR_014470) Copy   


  • RRID:SCR_014576

    This resource has 10+ mentions.

http://www.brainsimagebank.ac.uk

A searchable collection of anonymised images and associated clinical data. It includes normal individuals at all ages (from prenatal to old age). The image bank contains integrated data sets already collected as part of research studies which include control subjects. New data is added as they become available.

Proper citation: BRAINS Imagebank (RRID:SCR_014576) Copy   


https://community.brain-map.org/t/allen-human-reference-atlas-3d-2020-new/405

Parcellation of adult human brain in 3D, labeling every voxel with brain structure spanning 141 structures. These parcellations were drawn and adapted from prior 2D version of adult human brain atlas.

Proper citation: Allen Human Reference Atlas, 3D, 2020 (RRID:SCR_017764) Copy   


https://www.synapse.org/#!Synapse:syn4921369/wiki/235539

Portal of PsychENCODE Consortium to study role of rare genetic variants involved in several psychiatric disorders. Database of regulatory elements, epigenetic modifications, RNA and protein in brain.

Proper citation: PsychENCODE Knowledge Portal (RRID:SCR_017500) Copy   


https://github.com/mitragithub/Registration

Software package to align brain slice images in atlas free manner.

Proper citation: Registration Software Mitra Lab (RRID:SCR_018353) Copy   


http://www.uky.edu/coa/ADC

Alzheimer's Disease Center that serves as the focal point for all Alzheimer's disease-related activities at the University of Kentucky and the Commonwealth of Kentucky providing an environment and core resources that catalyze innovative research, outreach, education, and clinical programs. Their ADC plans to build on its historic strengths and capitalize on emerging opportunities to provide an infrastructure that supports research designed to translate knowledge into therapeutic strategies for AD. They focus on two interrelated themes: Transitions and Translation. Their overall emphasis is to more effectively bridge the gap between basic research and clinical studies by facilitating translational efforts. They also carefully characterize transitions across the spectrum of cognitive impairment (normal/ preclinical AD/ MCI/ dementia), with focus on definition of early disease, and continue to support neuropathology as the bedrock of our center. The Alzheimer Disease Center's 2006-2011 grant award from the National Institute on Aging consists of five cores: * Administrative Core * Clinical Core * Biostatistics and Data Management Core * Neuropathology Core * Education & Information Transfer Core

Proper citation: University of Kentucky Alzheimer's Disease Center (RRID:SCR_008767) Copy   


http://research.mssm.edu/cnic/

Center to advance research and training in mathematical, computational and modern imaging approaches to understanding the brain and its functions. Software tools and associated reconstruction data produced in the center are available. Researchers study the relationships between neural function and structure at levels ranging from the molecular and cellular, through network organization of the brain. This involves the development of new computational and analytic tools for imaging and visualization of 3-D neural morphology, from the gross topologic characteristics of the dendritic arbor to the fine structure of spines and their synapses. Numerical simulations of neural mechanisms based on these structural data are compared with in-vivo and in-vitro electrophysiological recordings. The group also develops new theoretical and analytic approaches to exploring the function of neural models of working memory. The goal of this analytic work is to combine biophysically realistic models and simulations with reduced mathematical models that capture essential dynamical behaviors while reproducing the functionally important features of experimental data. Research areas include: Imaging Studies, Volume Integration, Visualization Techniques, Medial Axis Extraction, Spine Detection and Classification, Applications of Rayburst, Analysis of Spatially Complex Structures, Computational Modeling, Mathematical and Analytic Studies

Proper citation: Computational Neurobiology and Imaging Center (RRID:SCR_013317) Copy   


https://www.aplysia.earth.miami.edu/

Center where Aplysia californica are cultured and raised for research purposes. Aplysia from the facility serve in research on genomics, human brain function, toxicology for developmental studies, natural products, chemistry for isolation of novel anti-tumor and antibacterial compounds, in the study of transport by digestive tissues and have potential for use in studies of substance addiction and nerve senescence and regeneration.

Proper citation: National Resource for Aplysia (RRID:SCR_008361) Copy   


https://www.amazon.com/How-Brain-Works-Mark-Dubin/dp/0632044411

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Is the Brain (Like) a Computer is an e-book written by Prof. Mark Dubin. It consists of the following: Introduction. Why do we consider the relationship of brains and computers and what does this have to do with consciousness? What's a Brain Made Of? A thought experiment. Test Drive a Turing Machine. A theoretical approach. Interim Summary. Many of the main pages have links to additional information. When you click on one of those links a NEW page will open ON TOP of the page you are clicking from. This convention is adopted so that you can look at the additional information and then easily return to the main page you got there from.

Proper citation: Is the Brain (Like) a Computer (RRID:SCR_008809) Copy   


http://healthybrain.umn.edu/

Research forum portal to address brain status by acquiring comprehensive, multimodal data from healthy humans across the lifespan to characterize brain status, assess its change over time, and associate composite descriptors of brain status. Specifically, the measurements are acquired noninvasively by existing neuroimaging technologies (structural MRI, functional MRI, magnetic resonance spectroscopy, diffusion MRI, and magnetoencephalography); in addition, genetic, cognitive, language, and lifestyle data are acquired. Goals: * Derive the Brain Health Index- An integrative assessment of brain status derived from multimodal measurements of brain structure, function, and chemistry. * Continue acquiring data to construct the first-ever databank on brain, cognitive, language and genetic measurements for healthy people across the lifespan. * Provide a novel and unique dataset by which to: characterize brain status, assess its change over time, and associate it with genetic makeup, cognitive function, and language abilities. * Forecast future brain health and disease based on current measurements and guide physicians towards new interventions and evaluate interventions as they develop. * Extend to siblings and other family members to further assess the genetic influences and inheritability.

Proper citation: HBP: Healthy Brain Project (RRID:SCR_013137) Copy   


  • RRID:SCR_016414

    This resource has 10+ mentions.

https://github.com/NOCIONS/letswave6/wiki/Download-and-setup

Open source electroencephalogram (EEG) signal processing toolbox to process and visualise EEG/MEG data and other neurophysiological signals.

Proper citation: Letswave (RRID:SCR_016414) Copy   


http://www.nitrc.org/projects/nutil/

Software toolbox to simplify and streamline mechanism of pre and post processing 2D brain image data. Neuroscience image processing and analysis utilities. Stand alone application that runs on all operating systems.

Proper citation: Nutil - Neuroimaging utilities (RRID:SCR_017183) Copy   


  • RRID:SCR_017572

    This resource has 1+ mentions.

http://hpc-bioinformatics.cineca.it/stress_mice/

Sapienza University of Rome and Cineca consortium portal. Used for analyzing published RNAseq transcriptomes obtained from brain of mice exposed to different kinds of stress protocols, to generate database of stress related differentially expressed genes and to identify factors contributing to vulnerability or resistance to stress. Allows to query database of RNAseq data.

Proper citation: Stress Mice Portal (RRID:SCR_017572) Copy   


  • RRID:SCR_002403

    This resource has 1000+ mentions.

http://www.mricro.com

Software tool as a cross-platform NIfTI format image viewer. Used for viewing and exporting of brain images. MRIcroGL is a variant of MRIcron.

Proper citation: MRIcron (RRID:SCR_002403) Copy   


http://www.epmba.org/

The Electronic Prenatal Mouse Brain Atlas, EPMBA, at present consists of two sets of annotated images of coronal sections from Gestational Day (GD) 12 heads and GD 16 brains of C57BL/6J mice. Ten micron thick sections were stained with hematoxylin and eosin. Images were prepared at various resolutions for annotations and for high resolution presentation. A subset of sections were annotated and linked to anatomical terms. Additionally, horizontal sections of a GD 12 head were aligned and re-assembled into a 3D volume for digital sectioning in arbitrarily oblique planes. These images were captured using a Nikon E800 stereomicroscope with a 10X objective. The resolution is 1.35 pixels/micrometer. The PC program used to grab the images, Microbrightfield's Neurolucida (version 6), stitched together a mosaic of between 10 and 50 high-res images for each tissue slice, while the user focused the scope for each mosaic tile. Since the nature of optic lenses is to focus on one central point, it was difficult to obtain a uniformly-focused field of vision; as such, small areas of these images are blurred. Images were then transferred to a Macintosh and processed in Adobe Photoshop (version 7). Color levels were adjusted for maximum clarity of the tissue, and areas surrounding the tissue were cleared of artifacts. Each image is approximately 3350 pixels wide by 2650 pixels high. A scale bar with a length of 1350 pixels/mm is visible in the lower right-hand corner of each image. The annotations have been completed for the Atlas of Developing Mouse Brain Gestational (Embryonic) Day 12 (7/5/07) as well as the Atlas of Developing Mouse Brain Embryonic Day 16 (4/26/07). The 3D EPMBA data set has been mounted on a NeuroTerrain Atlas Server (NtAS). (6/27/07).

Proper citation: EPMBA.ORG: Electronic Prenatal Mouse Brain Atlas (RRID:SCR_001882) Copy   


http://www.ataxia.org/research/ataxia-tissue-donation.aspx

A website where users can find information on donating tissue for ataxia research.

Proper citation: NAF Ataxia Tissue Donation (RRID:SCR_003893) Copy   


http://www.nimhans.kar.nic.in/neuropathology/neuropath2.htm#brainbank

A National Facility to promote research in Neurobiology using human nervous tissues. The brain tissues collected with informed consent of close relatives within 4-24 hours following death are frozen for Biochemical, Immuno-histochemical and Molecular Biological studies. A large number of formalin fixed brain tissues from various Neurological, Neurosurgical and Psychiatric disorders are also available for study.

Proper citation: Bangalore Brain Bank (RRID:SCR_004227) Copy   


  • RRID:SCR_003120

    This resource has 1+ mentions.

http://www.sharmuk.org/

A not for profit organization to accelerate research into aging by sharing resources: providing access to cost and time effective, aged murine tissue through a biorepository and database of live ageing colonies, as well as promoting the networking of researchers and dissemination of knowledge through its online collaborative environment; MiCEPACE. ShARM will provide valuable resources for the scientific community while helping to reduce the number of animals used in vital research into aging. The biobank of tissue and networking facility will enable scientists to access shared research material and data. By making use of collective resources, the number of individual animals required in research experiments can be minimized. The project also has the added value of helping to reduce the costs of research by connecting scientists, pooling resource and combining knowledge. ShARM works in partnership with MRC Harwell and the Centre for Intergrated Research into Musculoskeletal Ageing (CIMA).

Proper citation: ShARM (RRID:SCR_003120) Copy   


https://ndriresource.org/for-researchers/services-capabilities-sample/htorr

NDRI’s Human Tissue and Organs for Research Resource (HTORR) Program has been funded by the National Institutes of Health (NIH) for over 30 consecutive years to support research programs across multiple disciplines. It is through the HTORR program that NDRI provides academic biomedical investigators with donated normal and diseased human tissues and organs recovered from a diverse donor pool using customized procurement, processing, and preservation and distribution protocols. Our HTORR Program supports academic biomedical research investigators needs by providing: Access to a wide array of human biospecimens from any body system * Customized procurement in a variety of preservation formats including fresh, frozen, and fixed suitable for various analytical techniques * Reduced costs for tissue procurement * Technical support to design your studies utilizing human biospecimens * Letters of support and budgetary information for grant applications

Proper citation: Human Tissue and Organ for Research Resource (HTORR) (RRID:SCR_002859) Copy   


  • RRID:SCR_002884

    This resource has 1+ mentions.

http://www.gensat.org/retina.jsp

Collection of images from cell type-specific protein expression in retina using BAC transgenic mice. Images from cell type-specific protein expression in retina using BAC transgenic mice from GENSAT project.

Proper citation: Retina Project (RRID:SCR_002884) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X