SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.brainsimagebank.ac.uk
A searchable collection of anonymised images and associated clinical data. It includes normal individuals at all ages (from prenatal to old age). The image bank contains integrated data sets already collected as part of research studies which include control subjects. New data is added as they become available.
Proper citation: BRAINS Imagebank (RRID:SCR_014576) Copy
http://cerebrovascularportal.org
Portal enables browsing, searching, and analysis of human genetic information linked to cerebrovascular disease and related traits, while protecting the integrity and confidentiality of the underlying data.
Proper citation: Cerebrovascular Disease Knowledge Portal (RRID:SCR_015628) Copy
http://spot.colorado.edu/~dubin/talks/brodmann/brodmann.html
Reference atlas of Brodmann Areas in the Human Brain with an Emphasis on Vision and Language. Other Pages include: Flat Brodmann Maps, Brodmann Area Names (with locational Descriptions), Flat Visual Area Maps, Language Areas, PopUp Gyri Maps
Proper citation: Brodmann Areas in the Human Brain with an Emphasis on Vision and Language (RRID:SCR_004857) Copy
An interactive, visual database containing more than 350 small molecule pathways found in humans. More than 2/3 of these pathways (>280) are not found in any other pathway database. SMPDB is designed specifically to support pathway elucidation and pathway discovery in metabolomics, transcriptomics, proteomics and systems biology. It is able to do so, in part, by providing exquisitely detailed, fully searchable, hyperlinked diagrams of human metabolic pathways, metabolic disease pathways, metabolite signaling pathways and drug-action pathways. All SMPDB pathways include information on the relevant organs, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Each small molecule is hyperlinked to detailed descriptions contained in the HMDB or DrugBank and each protein or enzyme complex is hyperlinked to UniProt. All SMPDB pathways are accompanied with detailed descriptions and references, providing an overview of the pathway, condition or processes depicted in each diagram. The database is easily browsed and supports full text, sequence and chemical structure searching. Users may query SMPDB with lists of metabolite names, drug names, genes / protein names, SwissProt IDs, GenBank IDs, Affymetrix IDs or Agilent microarray IDs. These queries will produce lists of matching pathways and highlight the matching molecules on each of the pathway diagrams. Gene, metabolite and protein concentration data can also be visualized through SMPDB''s mapping interface. All of SMPDB''s images, image maps, descriptions and tables are downloadable.
Proper citation: Small Molecule Pathway Database (RRID:SCR_004844) Copy
Common repository for diverse human microbiome datsets and minimum reporting standards for Common Fund Human Microbiome Project.
Proper citation: HMP Data Analysis and Coordination Center (RRID:SCR_004919) Copy
http://vision.ucsf.edu/hortonlab/index.html
Devise better ways to prevent and treat vision loss due to amblyopia and strabismus, and to advance medical science by understanding the human visual system. Various Images, Videos and Talks related to the research are available. In the Laboratory for Visual Neuroscience at the University of California, San Francisco, we are seeking to discover how visual perception occurs in the human brain. The function of the visual system is to guide our behavior by providing an efficient means for the rapid assimilation of information from the environment. As we navigate through our surroundings, a continuous stream of light images impinges on our eyes. In the back of each eye a light-sensitive tissue, the retina, converts patterns of light energy into electrical discharges known as action potentials. These signals are conveyed along the axons of retinal ganglion cells to the lateral geniculate body, a relay nucleus in the thalamus. Most of the output of the lateral geniculate body is relayed directly to the primary visual cortex (striate cortex, V1), and then to surrounding visual association areas. To understand the function of the visual pathways, our research is focused on 5 major themes: * Organization of Primary Visual Cortex * Mapping of Extrastriate Visual Cortex * Amblyopia and Visual Development * Strabismus and Visual Suppression * The Human Visual Cortex
Proper citation: UCSF Laboratory for Visual Neuroscience (RRID:SCR_004913) Copy
There are a lot of fine blogs out there covering the avalance of current neuroscience research. With this blog Thomas Rams��y & Martin Skov want to highlight the many consequences of this growing understanding of the human brain. We are especially interested in two types of consequences: Tinkering with the brain and What is it like to be a human being? * Tinkering with the brain: First and foremost, with an understanding of how the brain works comes the possibility of tinkering with it. We already use billions of dollars every year on psychopharmocologia trying to treat depression, schizophrenia, obsessive-compulsive disorder and other mental diseases. But should we also use our knowledge of the brain to treat undesirable mental traits such as pedophilia or sociopathy? And what about enhancing normal brains? Clearly, evolution hasn''t endowed us with the most efficient brain imaginable. Shouldn''t we do something about its many shortcomings? * What is it like to be a human being?: Secondly, our view of human behavior is sure to change with our improved understanding of the human brain. Our knowledge of core human faculties such as language, social reasoning, aesthetics, and economics is already being challenged by modern neuroscience, yielding multiple hard questions. Do we have a free will? Is the mind innate or plastic? If people are not responsible for their actions (since all actions are caused by blind molecular processes) does our legal system still make sense? In short, will modern neuroscience come to completely redefine human nature? We try to discuss contemporary research literature, not just news reports. Although we will occasionally also target popular science reports, since we believe they play an important role in dissemining lessons from the lab. And in the future we plan to also post interviews with interesting researchers, as well as link to our own publications in journals and books. Additionally, the latest and most important books in the multidisciplinary field of neuroscience, cognition, psychology, ethics and economics are presented.
Proper citation: BrainEthics (RRID:SCR_005530) Copy
http://hnrc.hivresearch.ucsd.edu/
The mission of the HIV Neurobehavioral Research Center (HNRC) is to increase our understanding of how HIV and other diseases affect the human nervous system. The HNRC conducts local, national, and international research devoted to advancing our knowledge of the prevention, diagnosis and treatment of HIV-related diseases as they affect the brain and nervous system, and result in impairment of everyday functioning. Research areas of the Center include: - The incidence, prevalence, and features of neurocognitive impairment caused by HIV - The attributes of the virus, host, and host-virus interactions that determine the presentation of HIV-associated neurocognitive disorders - Possible molecular and cellular mechanisms of nervous system impairment, including the mechanisms by which host-virus factors generate neural injury and neurobehavioral disorders - The cerebrospinal fluid (CSF) as a window on CNS events * The role of co-pathogens and comorbidities in neuroAIDS (e.g., hepatitis C infection, methamphetamine abuse) - Real life implications of neurocognitive impairment in terms of work, daily life, and survival - The effects of HIV disease and neurocognitive impairment on family and social adaptation - NeuroAIDS in resource limited settings - Treatments for neurocognitive impairment and behavioral interventions HNRC also has a Developmental Grants Program (DGP), the primary goal of which is the initiation of innovative studies by junior faculty and trainees at UCSD or affiliated institutions with the following objectives: 1. Recruitment to neuroAIDS research of new investigators or established investigators without prior experience in the field; 2. Generation and pilot testing of new research initiatives; 3. Fostering collaboration among investigators from throughout Southern California. The program provides to qualified investigators and trainees any appropriate combination of the following forms of support: 1. Small, 1-2 year grants to support pilot studies; 2. Access to HNRC core resources such as data, specimens, participants, equipment, administrative support, or expert consultation and technical assistance. Lastly, The the NHRC Mentored Investigator Program recruits, supports, and follows the progress of graduate students, postdoctoral (Ph.D. or M.D.) fellows, and junior faculty in disciplines relevant to HNRC research. The HNRC is committed to tailoring our training opportunities to the backgrounds and interests of candidates from a variety of disciplines who join us with various levels of training and experience in research. We have and will continue to provide training and mentoring of medical students, doctoral students in clinical psychology, and postdoctoral fellows in Medicine, Psychiatry, Neurology, and Psychology. Sponsors: The Center is supported by public funding from the National Institutes of Health, the State of California, and other sources.
Proper citation: HIV Neurobehavioral Research Center (RRID:SCR_005370) Copy
http://fcon_1000.projects.nitrc.org/
Collection of resting state fMRI (R-fMRI) datasets from sites around world. It demonstrates open sharing of R-fMRI data and aims to emphasize aggregation and sharing of well-phenotyped datasets.
Proper citation: 1000 Functional Connectomes Project (RRID:SCR_005361) Copy
http://www.med.harvard.edu/AANLIB/
An atlas of normal and abnormal brain images intended as an introduction to basic neuroanatomy, with emphasis on the pathoanatomy of several leading central nervous system diseases that integrates clinical information with magnetic resonance (MR), x-ray computed tomography (CT), and nuclear medicine images. A range of brain abnormalities are presented including examples of certain brain disease presented with various combinations of image type and imaging frequency. Submissions of concise, exemplary, clinically driven examples of neuroimaging are welcome.
Proper citation: Whole Brain Atlas (RRID:SCR_005390) Copy
http://en.wikibooks.org/wiki/MINC/Atlases
A linear average model atlas produced by the International Consortium for Brain Mapping (ICBM) project. A set of full- brain volumetric images from a normative population specifically for the purposes of generating a model were collected by the Montreal Neurological Institute (MNI), UCLA, and University of Texas Health Science Center at San Antonio Research Imaging Center (RIC). 152 new subjects were scanned using T1, T2 and PD sequences using a specific protocol. These images were acquired at a higher resolution than the original average 305 data and exhibit improved contrast due predominately to advances in imaging technology. Each individual was linearly registered to the average 305 and a new model was formed. In total, three models were created at the MNI, the ICBM152_T1, ICBM152_T2 and ICBM152_PD from 152 normal subjects. This resulting model is now known as the ICBM152 (although the model itself has not been published). One advantage of this model is that it exhibits better contrast and better definition of the top of the brain and the bottom of the cerebellum due to the increased coverage during acquisition. The entirely automatic analysis pipeline of this data also included grey/white matter segmentation via spatial priors. The averaged results of these segmentations formed the first MNI parametric maps of grey and white matter. The maps were never made publicly available in isolation but have formed parts of other packages for some time including SPM, FSL AIR and as models of grey matter for EEG source location in VARETTA and BRAINWAVE. Again, as these models are an approximation of Talairach space, there are differences in varying areas, to continue our use of origin shift as an example, the ICBM models are approximately 152: +3.5mm in Z and +-co-ordinate -3.5mm and 2.0mm in Y as compared to the original Talairach origin. In addition to the standard analysis performed on the ICBM data, 64 of the subjects data were segmented using model based segmentation. 64 of the original 305 were manually outlined and a resulting parametric VOI atlas built. The native data from these acquisitions was 256x256 with 1mm slices. The final image resolution of this data was 181x217x181 with 1mm isotropic voxels. Refer to the ICBM152 NonLinear if you are fitting an individual to model and do not care about left/right comparisons. A short history of the various atlases that have been produced at the BIC (McConnell Brain Imaging Center, Montreal Neurological Institute) is provided.
Proper citation: MINC/Atlases (RRID:SCR_005281) Copy
http://www.thehamner.org/technology-and-development/technology-transfer/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 24, 2013. BMDExpress is a Java application used to analyze dose-response data from microarray experiments. The program was designed to perform a stepwise analysis on microarray data that combines bench mark dose (BMD) calculations with gene ontology (GO) classification analysis. The combination provides dose estimates at which different cellular processes are altered at a defined increase in risk based on expression levels in the untreated controls. The fitting of the data to the statistical models (linear, 2 polynomial models, 3 polynomial, and power models) is performed using source code borrowed from the U.S. Environmental Protection Agency''''s BMDS software. The MPPD model is a computational model that can be used for estimating human and rat airway particle dosimetry. The model is applicable to risk assessment, research, and education. The MPPD model calculates the deposition and clearance of monodisperse and polydisperse aerosols in the respiratory tracts of rats and human adults and children (deposition only) for particles ranging in size from ultrafine (0.01 m) to coarse (20 m). The models are based on single-path and multiple-path methods for tracking air flow and calculating aerosol deposition in the lung. The single-path method calculates deposition in a typical path per airway generation, while the multiple-path method calculates particle deposition in all airways of the lung and provides lobar-specific and airway-specific information. Within each airway, deposition is calculated using theoretically derived efficiencies for deposition by diffusion, sedimentation, and impaction within the airway or airway bifurcation. Filtration of aerosols by the head is determined using empirical efficiency functions. The MPPD model includes calculations of particle clearance in the lung following deposition. Eight tutorials are provided so that the user can learn to interact with the software.
Proper citation: The Hamner Institute for Health Sciences: BMDExpress and The multiple-path particle dosimetry (RRID:SCR_005511) Copy
http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html#
A grassroots initiative dedicated to accelerating the scientific community''''s understanding of the neural basis of ADHD through the implementation of open data-sharing and discovery-based science. They believe that a community-wide effort focused on advancing functional and structural imaging examinations of the developing brain will accelerate the rate at which neuroscience can inform clinical practice. The ADHD-200 Global Competition invited participants to develop diagnostic classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging (MRI) of the brain. Applying their tools, participants provided diagnostic labels for previously unlabeled datasets. The competition assessed diagnostic accuracy of each submission and invited research papers describing novel, neuroscientific ideas related to ADHD diagnosis. Twenty-one international teams, from a mix of disciplines, including statistics, mathematics, and computer science, submitted diagnostic labels, with some trying their hand at imaging analysis and psychiatric diagnosis for the first time. The data for the competition was provided by the ADHD-200 Consortium. Consortium members from institutions around the world provided de-identified, HIPAA compliant imaging datasets from almost 800 children with and without ADHD. A phenotypic file including all of the test set subjects and their diagnostic codes can be downloaded. Winner is presented. The ADHD-200 consortium included: * Brown University, Providence, RI, USA (Brown) * The Kennedy Krieger Institute, Baltimore, MD, USA (KKI) * The Donders Institute, Nijmegen, The Netherlands (NeuroImage) * New York University Medical Center, New York, NY, USA (NYU) * Oregon Health and Science University, Portland, OR, USA (OHSU) * Peking University, Beijing, P.R.China (Peking 1-3) * The University of Pittsburgh, Pittsburgh, PA, USA (Pittsburgh) * Washington University in St. Louis, St. Louis, MO, USA (WashU)
Proper citation: ADHD-200 Sample (RRID:SCR_005358) Copy
On March 8, 2008 in Havana, the Latin American Network for Brain Mapping (LABMAN) was created with participants from Argentina, Brazil, Colombia, Cuba and Mexico. The focus of LABMAN is to promote neuroimaging and systems neuroscience in the region through the implementation of training and exchange programs, and to increase public awareness of the Latin American potential to contribute both to basic and applied research in human brain mapping. The immediate LABMAN goals are to: * Train specialists in all major imaging techniques. * Expedite the transfer of new scientific and technical knowledge from abroad. * Increase the scientific productivity of the region. * Drastically increase the awareness of local governments, international organizations and of the general public of brain mapping results on potential. * Organize multinational projects in areas of special relevance to the region, e.g. nutrition, pediatric development, neurodegeneration. Latin American Brain Mapping Network (LABMAN) participants : * Cuban Neuroscience Center * University of Buenos Aires * University of Sao Paulo * Universidad del Valle, Cal��, Colombia * UAM Iztapalapa, Mexico City, Mexico
Proper citation: Latin American Brain Mapping Network (LABMAN) (RRID:SCR_005509) Copy
http://www.bscs.org/science-mental-illness
A set of lessons for students used to gain insight into the biological basis of mental illnesses and how scientific evidence and research can help us understand its causes and lead to treatments and, ultimately, cures. Both the Web version and the free supplement are available. It is a creative, inquiry-based instruction program designed to promote active learning and stimulate student interest in medical topics. This curriculum supplement aims to help students experience the process of scientific inquiry and develop an enhanced understanding of the nature and methods of science.
Proper citation: Science of Mental Illness: Grades 6- 8 (RRID:SCR_005612) Copy
http://science.education.nih.gov/home2.nsf/feature/index.htm
The NIH Office of Science Education (OSE) coordinates science education activities at the NIH and develops and sponsors science education projects in house. These programs serve elementary, secondary, and college students and teachers and the public. Activities * Develop curriculum supplements and other educational materials related to medicine and research through collaborations with scientific experts at NIH * Maintain a website as a central source of information about NIH science education resources * Establish national model programs in public science education, such as the NIH Mini-Med School and Science in the Cinema * Promote science education reform as outlined in the National Science Education Standards and related guidelines The OSE was established in 1991 within the Office of Science Policy of the Office of the Director of the National Institutes of Health. The NIH is the world''s foremost biomedical research center and the U.S. federal government''s focal point for such research. It is one of the components of the Department of Health and Human Services (HHS). The Office of Science Education (OSE) plans, develops, and coordinates a comprehensive science education program to strengthen and enhance efforts of the NIH to attract young people to biomedical and behavioral science careers and to improve science literacy in both adults and children. The function of the Office is as follows: (1) develops, supports, and directs new program initiatives at all levels with special emphasis on targeting students in grades kindergarten to 16, their educators and parents, and the general public; (2) advises NIH leadership on science education issues; (3) examines and evaluates research and emerging trends in science education and literacy for policy making; (4) works closely with the NIH extramural, intramural, women''s health, laboratory animal research, and minority program offices on science education special issues and programs to ensure coordination of NIH efforts; (5) works with NIH institutes, centers, and divisions to enhance communication of science education activities; and (6) works cooperatively with other public- and private-sector organizations to develop and coordinate activities.
Proper citation: NIH Office of Science Education (RRID:SCR_005603) Copy
http://ww2.sanbi.ac.za/Dbases.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The STACKdb is knowledgebase generated by processing EST and mRNA sequences obtained from GenBank through a pipeline consisting of masking, clustering, alignment and variation analysis steps. The STACK project aims to generate a comprehensive representation of the sequence of each of the expressed genes in the human genome by extensive processing of gene fragments to make accurate alignments, highlight diversity and provide a carefully joined set of consensus sequences for each gene. The STACK project is comprised of the STACKdb human gene index, a database of virtual human transcripts, as well as stackPACK, the tools used to create the database. STACKdb is organized into 15 tissue-based categories and one disease category. STACK is a tool for detection and visualization of expressed transcript variation in the context of developmental and pathological states. The data system organizes and reconstructs human transcripts from available public data in the context of expression state. The expression state of a transcript can include developmental state, pathological association, site of expression and isoform of expressed transcript. STACK consensus transcripts are reconstructed from clusters that capture and reflect the growing evidence of transcript diversity. The comprehensive capture of transcript variants is achieved by the use of a novel clustering approach that is tolerant of sub-sequence diversity and does not rely on pairwise alignment. This is in contrast with other gene indexing projects. STACK is generated at least four times a year and represents the exhaustive processing of all publicly available human EST data extracted from GenBank. This processed information can be explored through 15 tissue-specific categories, a disease-related category and a whole-body index
Proper citation: Sequence Tag Alignment and Consensus Knowledgebase Database (RRID:SCR_002156) Copy
http://www.ibiblio.org/dnam/mainpage.html
This site provides access to mutation databases and software including the human hprt database, Human p53 database, Transgenic lacZ database, and Transgenic lacI database. Other avaialble programs include Mutational spectra comparison and relational database data entry. The most recent hprt database contains information on over 2,300 mutations found in vivo and in vitro in the human hprt gene and runs under Windows. The version for evaluation on this homepage has fewer mutations and is a DOS program. The database contains information on the mutagen, dose, spontaneous and induced mutant fraction, base position, amino acid position, amino acid change, local DNA sequence, cell type, citation, and other items. In addition, information regarding the cause and effect of mutations affecting splicing is given. Routines have been developed for the analysis of single base substitutions. The p53 database contains information on nearly 5,867 mutations found in the human p53 gene. The database itself has been updated in April of 1997. The database contains information on the cancer type, loss of heterozygosity, base position, amino acid position, amino acid change, local DNA sequence,citation, and other items. Routines have been developed for the analysis of single base substitutions. The Transgenic lacZ database contains information on 405 mutations found in vivo in the transgenic lacZ gene. It has last been updated in January of 1998. It provides information on the mutagen, dose, organ, mutant fraction, base position, amino acid position, amino acid change, local DNA sequence, citation, and other items. The Transgenic lacI database contains information on over 1700 mutations found in vivo in the transgenic lacI gene and on nearly 8000 mutations in the lacI gene in native E. coli. The database was updated in January 1998. The database contains information on the mutagen, dose, organ, mutant fraction, base position, amino acid position, amino acid change, local DNA sequence, citation, and other items. Routines have been developed for the analysis of single base substitutions for each of the databases. The software runs only on IBM-compatible PCs.
Proper citation: Neal's DNA Mutation Site (RRID:SCR_002947) Copy
The human pathway database which contains different biological entities and reactions and software tools for analysis. PATIKA Database integrates data from several sources, including Entrez Gene, UniProt, PubChem, GO, IntAct, HPRD, and Reactome. Users can query and access this data using the PATIKAweb query interface. Users can also save their results in XML or export to common picture formats. The BioPAX and SBML exporters can be used as part of this Web service.
Proper citation: Pathway Analysis Tool for Integration and Knowledge Acquisition (RRID:SCR_002100) Copy
http://www.loni.ucla.edu/~thompson/thompson.html
The UCLA laboratory of neuroimaging is working in several areas to enhance knowledge of anatomy, including brain mapping in large human populations, HIV, Schizophrenia, methamphetamine, tumor growth and 4d brain mapping, genetics and detection of abnormalities.
Proper citation: University of California at Los Angeles, School of Medicine: Neuro Imaging Lab of Thompson (RRID:SCR_001924) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.