SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.nesys.uio.no/Micro3D/
The Micro3D 2004 is a software for 3-D reconstruction, visualization, and analysis of neuronal populations and brain regions. Micro3D generates geometric models from line and point coded data sets, representing labeled objects such as cell bodies or axonal plexuses, and boundaries of brain regions in serial sections. Data are typically imported from image-combining computerized microscopy systems, such as Neurolucida (MicroBrightField, Colchester, VT). The models may be rotated and zoomed in real-time. Surfaces are re-synthesized on the basis of stacks of contour lines. Clipping is used for defining section-independent subdivisions of the model. Flattening of sheets of points in curved layers (e.g., neurons in a cortical lamina) facilitates inspection of complicated distribution patterns. Micro3D computes color-coded density maps, and allows production of mpeg videos. Micro3D 2004 runs on LINUX PCs equipped with Open Inventor. It performs operations similar to the Silicon Graphics based version that has been used in more than 25 investigations and in various species, ranging from insects to monkeys, at the LM- and EM-level. Sponsors:Micro 3D was developed with support from The Research Council of Norway and The Oslo Research Park / FORNY.
Proper citation: Neural Systems and Graphics Computing Laboratory: Micro3D Software (RRID:SCR_001811) Copy
https://tracedrawer.com/product/tracedrawer/
Software for evaluating, comparing and presenting real-time interaction data. Used for quantification of kinetics and affinity through curve fitting, with large number of binding models to choose from. Can extract experimental information from measurement, requiring minimal user input.
Proper citation: TraceDrawer (RRID:SCR_025782) Copy
http://neuro.imm.dtu.dk/software/brede/
A package for neuroinformatics and neuroimaging analysis mostly programmed in Matlab with a few additional programs in Python and Perl. It allows coordinate-based meta-analysis and visualization, neuroimaging analysis of voxel or regional data - not the original data but rather the summary images (e.g., statistical parametric images) and location data in stereotactic space. Among the algorithms implemented are kernel density estimation (for coordinate-based meta-analysis), independent component analysis, non-negative matrix factorization, k-means clustering, singular value decomposition, partial correlation analysis with permutation testing and partial canonical correlation analysis. Visualization of coordinate, surfaces and volumes are possible in 2D and 3D. Generation of HTML for results are possible and algorithms can be accessed from the command line or via a flexible graphical interface. With the Brede Toolbox comes the Brede Database with a small coordinate database from published neuroimaging studies, and ontologies for, e.g., brain function and brain regions.
Proper citation: Brede Toolbox (RRID:SCR_006204) Copy
http://www.geenivaramu.ee/en/tools/gwama
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software tool for meta analysis of whole genome association data.
Proper citation: GWAMA (RRID:SCR_006624) Copy
http://www.leaddiscovery.co.uk/
LeadDiscovery was founded by life scientists to expedite drug discovery and pharmaceutical development. Based on a solid background of experience from within the pharmaceutical research and development sector, the aim of this resource is to help companies optimize drug discovery and product pipelines through the identification of breaking research and the in depth and expert evaluation of selected therapeutic areas. At the same time it also provides a showcase for pharmaceutical, biotechnology and academic organizations wishing to increase the exposure of their research to the drug development community. LeadDiscovery sits at the center of this sector helping companies to identify commercially viable R&D options from within small biotechs and the public sector. Additionally, it supports the drug discovery and pharmaceutical development community through three key services: DailyUpdates, UpdatesPlus and PharmaReports - DailyUpdates: Launched in 2002 this popular e-mail alert service delivers information on breaking research, new clinical trials, drug development news and recently published market research and pipeline analysis reports. Registration to receive the service is available here - UpdatesPlus: Developed in 2007 as an extension of DailyUpdates, UpdatesPlus provides a monthly in depth analysis of breaking research and development activity in high profile therapeutic areas. - PharmaReports: LeadDiscovery offers a wide range of in depth pharmaceutical reports. It''s reports include market research reports and pipeline analyses. You can search our entire portfolio using LeadDiscovery''s search engine. Alternatively as it are one of the few information providers that has extensive research and development experience, LeadDiscovery occupys a unique position of being able to source reports that accurately meet your needs. If we don''t have a report that fits your requirements, it can produce one through its pharmaceutical consultancy services. LeadDiscovery offers full reports in selected areas of the pharmaceutical and biotech sector. Each of the reports below has been especially selected by LeadDiscovery and categorized into relevant areas: - Oncology - Cancer Immunotherapy - Immunology & Inflammatory Diseases - Infectious Diseases - Psychiatric, Addictive & Sleep Disorders - Pain - Neurodegenerative & Neuroelectrophysiological Disorders - Metabolic & Hormonal Disorders - Cardiovascular Disorders - GenitoUrinary Tract Disorders - Technology - Diagnostics & Devices - Other Theraputic Areas, Pharmaceutical Strategy and Development
Proper citation: LeadDiscovery: Providing Information to the Drug Discovery Sector (RRID:SCR_006464) Copy
http://bioconductor.org/packages/bioc/html/GeneAnswers.html
GeneAnswers provide an integrated tool for given genes biological or medical interpretation. It includes statistical test of given genes and specified categories. Microarray techniques have been widely employed in genomic scale studies for more than one decade. The standard analysis of microarray data is to filter out a group of genes from thousands of probes by certain statistical criteria. These genes are usually called significantly differentially expressed genes. Recently, next generation sequencing (NGS) is gradually adopted to explore gene transcription, methylation, etc. Also a gene list can be obtained by NGS preliminary data analysis. However, this type of information is not enough to understand the potential linkage between identified genes and interested functions. The integrated functional and pathway analysis with gene expression data would be very helpful for researchers to interpret the relationship between the identified genes and proposed biological or medical functions and pathways. The GeneAnswers package provides an integrated solution for a group of genes and specified categories (biological or medical functions, such as Gene Ontology, Disease Ontology, KEGG, etc) to reveal the potential relationship between them by means of statistical methods, and make user-friendly network visualization to interpret the results. Besides the package has a function to combine gene expression profile and category analysis together by outputting concept-gene cross tables, keywords query on NCBI Entrez Gene and application of human based Disease ontology analysis of given genes from other species can help people to understand or discover potential connection between genes and functions. Sponsors: This project was supported in part by Award Number UL1RR025741 from the National Center for Research Resources.
Proper citation: GeneAnswers (RRID:SCR_006498) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2019.
Database for those interested in the consequences of Factor VIII genetic variation at the DNA and protein level, it provides access to data on the molecular pathology of haemophilia A. The database presents a review of the structure and function of factor VIII and the molecular genetics of haemophilia A, a real time update of the biostatistics of each parameter in the database, a molecular model of the A1, A2 and A3 domains of the factor VIII protein (based on the crystal structure of caeruloplasmin) and a bulletin board for discussion of issues in the molecular biology of factor VIII. The database is completely updated with easy submission of point mutations, deletions and insertions via e-mail of custom-designed forms. A methods section devoted to mutation detection is available, highlighting issues such as choice of technique and PCR primer sequences. The FVIII structure section now includes a download of a FVIII A domain homology model in Protein Data Bank format and a multiple alignment of the FVIII amino-acid sequences from four species (human, murine, porcine and canine) in addition to the virtual reality simulations, secondary structural data and FVIII animation already available. Finally, to aid navigation across this site, a clickable roadmap of the main features provides easy access to the page desired. Their intention is that continued development and updating of the site shall provide workers in the fields of molecular and structural biology with a one-stop resource site to facilitate FVIII research and education. To submit your mutants to the Haemophilia A Mutation Database email the details. (Refer to Submission Guidelines)
Proper citation: HAMSTeRS - The Haemophilia A Mutation Structure Test and Resource Site (RRID:SCR_006883) Copy
http://www.physionet.org/physiotools/
Growing library of software for physiologic signal processing and analysis, detection of physiologically significant events using both classical techniques and novel methods based on statistical physics and nonlinear dynamics, interactive display and characterization of signals, creation of new databases, simulation of physiologic and other signals, quantitative evaluation and comparison of analysis methods, and analysis of nonequilibrium and nonstationary processes. A unifying theme of the research projects that contribute software to PhysioToolkit is the extraction of hidden information from biomedical signals, information that may have diagnostic or prognostic value in medicine, or explanatory or predictive power in basic research. Contributions of software to PhysioToolkit are welcome, http://physionet.org/guidelines.shtml#software-contributions
Proper citation: PhysioToolkit (RRID:SCR_006868) Copy
http://www.nitrc.org/projects/voxbo
Software package for brain image manipulation and analysis, focusing on fMRI and lesion analysis. VoxBo can be used independently or in conjunction with other packages. It provides GLM-based statistical tools, an architecture for interoperability with other tools (they encourage users to incorporate SPM and FSL into their processing pipelines), an automation system, a system for parallel distributed computing, numerous stand-alone tools, decent wiki-based documentation, and lots more.
Proper citation: VoxBo (RRID:SCR_002166) Copy
http://www.mevislab.de/index.php?id=6
Modular framework for the development of image processing algorithms and visualization and interaction methods, with a special focus on medical imaging. It includes advanced medical imaging modules for segmentation, registration, volumetry, and quantitative morphological and functional analysis. The platform allows fast integration and testing of new algorithms and the development of application prototypes that can be used in clinical environments. In MeVisLab, individual image processing, visualization and interaction modules can be combined to complex image processing networks using a graphical programming approach. The algorithms can easily be integrated using a modular, platform-independent C++ class library. An abstract, hierarchical definition language allows the design of efficient graphical user interfaces, hiding the complexity of the underlying module network to the end user. JavaScript components can be added to implement dynamic functionality on both the network and the user interface level. MeVisLab is based on the Qt application framework, the OpenInventor 3D visualization toolkit and OpenGL. Several clinical prototypes have been realized on the basis of MeVisLab, including software assistants for neuro-imaging, dynamic image analysis, surgery planning, and vessel analysis. Feature Overview: :- Basic image processing algorithms and advanced medical imaging modules :- Full featured, flexible 2D/3D visualization and interaction tools :- High performance for large datasets :- Modular, expandable C++ image processing library :- Graphical programming of complex, hierarchical module networks :- Object-oriented GUI definition and scripting :- Full scripting functionality using Python and JavaScript :- DICOM support and PACS integration :- Intuitive user interface :- Integrated movie and screenshot generation for demonstration purposes :- Generic integration of the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) :- Cross-platform support for Windows, Linux, and MacOS X :- Available for 64-bit operating systems
Proper citation: Medical Image Processing and Visualization (RRID:SCR_002055) Copy
http://microarrays.curie.fr/publications/U900-RPPA_PLT/Normacurve/
Analysis methodology that allows simultaneous quantification and normalization of reverse phase protein array (RPPA) data.
Proper citation: NormaCurve (RRID:SCR_001995) Copy
http://jcb-dataviewer.rupress.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 14,2026. A web-based, multi-dimensional image data-viewing application for original microscopy image datasets associated with articles published in The Journal of Cell Biology, a peer-reviewed journal published by The Rockefeller University Press. The JCB DataViewer can host multidimensional fluorescence microscopy images, 3D tomogram data, very large (gigapixel) images, and high content imaging screens. Images are presented in an interactive viewer, and the scores from high content screens are presented in interactive graphs with data points linked to the relevant images. The JCB DataViewer uses the Bio-Formats library to read over 120 different imaging file formats and convert them to the OME-TIFF image data standard. Image data are archived by the Journal and may be freely accessed by readers using the JCB DataViewer. Download of author-provided image data and associated metadata in OME-TIFF format is also possible with author permission, allowing for independent analysis of image data irrespective of acquisition or viewing software. Although the JCB DataViewer is designed to host and facilitate sharing and analysis of original microscopy image data, authors may also upload other types of original image data as supplements to their manuscripts, including histology and electron micrographs and digital scans of gels or blots.
Proper citation: JCB DataViewer (RRID:SCR_002633) Copy
A freely available software tool available for the Windows and Linux platform, as well as the Online version Applet, for the analysis, comparison and search of digital reconstructions of neuronal morphologies. For the quantitative characterization of neuronal morphology, LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions, including: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of 20 neurons. The tool is available for either online use on any Java-enabled browser and platform or may be downloaded for local execution under Windows and Linux.
Proper citation: L-Measure (RRID:SCR_003487) Copy
http://www.idoimaging.com/program/280
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 6, 2023.Comprised of a large array of sophisticated programs, this comprehensive software package with tools based around the MINC file format. Utilities are provided for conversion, viewing, editing, registering, segmentation, and a wide array of analysis. Many programs are in Perl. MINC software tools for neurological imaging are free. Input format: Analyze, DICOM, Minc
Proper citation: MINC Brain Imaging Toolbox (RRID:SCR_003519) Copy
http://www.oege.org/software/hwe-mr-calc.shtml
This portal leads to the Chi-sq Hardy-Weinberg equilibrium test calculator for biallelic markers (SNPs, indels etc), including analysis for ascertainment bias for dominant/recessive models (due to biological or technical causes.) The purpose of this web program is for estimating possible missingness and an approach to evaluating missingness under different genetic models. Mendelian randomization (MR) permits causal inference between exposures and a disease. It can be compared with randomized controlled trials. Whereas in a randomized controlled trial the randomization occurs at entry into the trial, in MR the randomization occurs during gamete formation and conception. Several factors, including time since conception and sampling variation, are relevant to the interpretation of an MR test. Particularly important is consideration of the missingness of genotypes that can be originated by chance, genotyping errors, or clinical ascertainment. Testing for Hardy-Weinberg equilibrium (HWE) is a genetic approach that permits evaluation of missingness. Through this tool, the authors demonstrate evidence of nonconformity with HWE in real data. They also perform simulations to characterize the sensitivity of HWE tests to missingness. Unresolved missingness could lead to a false rejection of causality in an MR investigation of trait-disease association. These results indicate that large-scale studies, very high quality genotyping data, and detailed knowledge of the life-course genetics of the alleles/genotypes studied will largely mitigate this risk. Sponsors: This resource is supported by an Intermediate Fellowship (grant FS/05/065/19497) from the British Heart Foundation.
Proper citation: Hardy-Weinberg Equilibrium Calculator (RRID:SCR_008371) Copy
http://genewindow.nci.nih.gov/
Software tool for pre- and post-genetic bioinformatics and analytical work, developed and used at the Core Genotyping Facility (CGF) at the National Cancer Institute. While Genewindow is implemented for the human genome and integrated with the CGF laboratory data, it stands as a useful tool to assist investigators in the selection of variants for study in vitro, or in novel genetic association studies. The Genewindow application and source code is publicly available for use in other genomes, and can be integrated with the analysis, storage, and archiving of data generated in any laboratory setting. This can assist laboratories in the choice and tracking of information related to genetic annotations, including variations and genomic positions. Features of GeneWindow include: -Intuitive representation of genomic variation using advanced web-based graphics (SVG) -Search by HUGO gene symbol, dbSNP ID, internal CGF polymorphism ID, or chromosome coordinates -Gene-centric display (only when a gene of interest is in view) oriented 5 to 3 regardless of the reference strand and adjacent genes -Two views, a Locus Overview, which varies in size depending on the gene or genomic region being viewed and, below it, a Sequence View displaying 2000 base pairs within the overview -Navigate the genome by clicking along the gene in the Locus Overview to change the Sequence View, expand or contract the genomic interval, or shift the view in the 5 or 3 direction (relative to the current gene) -Lists of available genomic features -Search for sequence matches in the Locus Overview -Genomic features are represented by shape, color and opacity with contextual information visible when the user moves over or clicks on a feature -Administrators can insert newly-discovered polymorphisms into the Genewindow database by entering annotations directly through the GUI -Integration with a Laboratory Information Management System (LIMS) or other databases is possible
Proper citation: GeneWindow (RRID:SCR_008183) Copy
http://www.neuroscience.cam.ac.uk/
This portal provides information about the neuroscience department at the University of Cambridge. Cambridge has a strong tradition in neuroscience having been host to the first analyses of neural signaling in the 1930s, determined the mechanisms of neuronal firing in the 1950s, and heralded some of the early theoretical approaches to the functions of neural circuitry in the 1960s. Neuroscience continues to grow at Cambridge, with an impressive record of achievement in multidisciplinary research.
Proper citation: Cambridge Neuroscience Department (RRID:SCR_008649) Copy
http://grey.colorado.edu/emergent
emergent is a comprehensive, full-featured neural network simulator that allows for the creation and analysis of complex, sophisticated models of the brain in the world. With an emphasis on qualitative analysis and teaching, it also supports the workflow of professional neural network researchers. Its high level drag-and-drop programming interface, built on top of a scripting language that has full introspective access to all aspects of networks and the software itself, allows one to write programs that seamlessly weave together the training of a network and evolution of its environment without ever typing out a line of code. Networks and all of their state variables are visually inspected in 3d, allowing for a quick visual regression of network dynamics and robot behavior. This same 3d world sports a highly accurate Newtonian physics simulation, allowing you to create rich robotics simulations (for example, a car). As a direct descendant of PDP (1986) and PDP (1999), emergent has been in development for decades. In the most recent versions available strive to distill it down to its essential elements. Those that take the time to learn the best practices will be rewarded with the ability to create and understand the most complicated neural models ever published.
Proper citation: Emergent (RRID:SCR_008500) Copy
https://CRAN.R-project.org/package=gma
Software package to perform Granger mediation analysis for time series. Includes single level GMA model and two-level GMA model, for time series with hierarchically nested structure.
Proper citation: GMA (RRID:SCR_009212) Copy
APID Interactomes (Agile Protein Interactomes DataServer) provides information on the protein interactomes of numerous organisms, based on the integration of known experimentally validated protein-protein physical interactions (PPIs). The interactome data includes a report on quality levels and coverage over the proteomes for each organism included. APID integrates PPIs from primary databases of molecular interactions (BIND, BioGRID, DIP, HPRD, IntAct, MINT) and also from experimentally resolved 3D structures (PDB) where more than two distinct proteins have been identified. This collection references protein interactors, through a UniProt identifier.
Proper citation: Agile Protein Interactomes DataServer (RRID:SCR_008871) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.