Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://openconnectomeproject.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. Connectomes repository to facilitate the analysis of connectome data by providing a unified front for connectomics research. With a focus on Electron Microscopy (EM) data and various forms of Magnetic Resonance (MR) data, the project aims to make state-of-the-art neuroscience open to anybody with computer access, regardless of knowledge, training, background, etc. Open science means open to view, play, analyze, contribute, anything. Access to high resolution neuroanatomical images that can be used to explore connectomes and programmatic access to this data for human and machine annotation are provided, with a long-term goal of reconstructing the neural circuits comprising an entire brain. This project aims to bring the most state-of-the-art scientific data in the world to the hands of anybody with internet access, so collectively, we can begin to unravel connectomes. Services: * Data Hosting - Their Bruster (brain-cluster) is large enough to store nearly any modern connectome data set. Contact them to make your data available to others for any purpose, including gaining access to state-of-the-art analysis and machine vision pipelines. * Web Viewing - Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID) is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by Google Maps, enhanced to allow the exploration of 3D image data. View the fork of the code or go directly to view the data. * Volume Cutout Service - RESTful API that enables you to select any arbitrary volume of the 3d database (3ddb), and receive a link to download an HDF5 file (for matlab, C, C++, or C#) or a NumPy pickle (for python). Use some other programming language? Just let them know. * Annotation Database - Spatially co-registered volumetric annotations are compactly stored for efficient queries such as: find all synapses, or which neurons synapse onto this one. Create your own annotations or browse others. *Sample Downloads - In addition to being able to select arbitrary downloads from the datasets, they have also collected a few choice volumes of interest. * Volume Viewer - A web and GPU enabled stand-alone app for viewing volumes at arbitrary cutting planes and zoom levels. The code and program can be downloaded. * Machine Vision Pipeline - They are building a machine vision pipeline that pulls volumes from the 3ddb and outputs neural circuits. - a work in progress. As soon as we have a stable version, it will be released. * Mr. Cap - The Magnetic Resonance Connectome Automated Pipeline (Mr. Cap) is built on JIST/MIPAV for high-throughput estimation of connectomes from diffusion and structural imaging data. * Graph Invariant Computation - Upload your graphs or streamlines, and download some invariants. * iPad App - WholeSlide is an iPad app that accesses utilizes our open data and API to serve images on the go.
Proper citation: Open Connectome Project (RRID:SCR_004232) Copy
http://www.picsl.upenn.edu/ANTS/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. Software package designed to enable researchers with advanced tools for brain and image mapping. Many of the ANTS registration tools are diffeomorphic*, but deformation (elastic and BSpline) transformations are available. Unique components of ANTS include multivariate similarity metrics, landmark guidance, the ability to use label images to guide the mapping and both greedy and space-time optimal implementations of diffeomorphisms. The symmetric normalization (SyN) strategy is a part of the ANTS toolkit as is directly manipulated free form deformation (DMFFD). *Diffeomorphism: a differentiable map with differentiable inverse. In general, these maps are generated by integrating a time-dependent velocity field. ANTS Applications: * Gray matter morphometry based on the jacobian and/or cortical thickness. * Group and single-subject optimal templates. * Multivariate DT + T1 brain templates and group studies. * Longitudinal brain mapping -- special similarity metric options. * Neonatal and pediatric brain segmentation. * Pediatric brain mapping. * T1 brain mapping guided by tractography and connectivity. * Diffusion tensor registration based on scalar or connectivity data. * Brain mapping in the presence of lesions. * Lung and pulmonary tree registration. * User-guided hippocampus labeling, also of sub-fields. * Group studies and statistical analysis of cortical thickness, white matter volume, diffusion tensor-derived metrics such as fractional anisotropy and mean diffusion., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: ANTS - Advanced Normalization ToolS (RRID:SCR_004757) Copy
Markup Language that provides a representation of PDB data in XML format. The description of this format is provided in XML schema of the PDB Exchange Data Dictionary. This schema is produced by direct translation of the mmCIF format PDB Exchange Data Dictionary Other data dictionaries used by the PDB have been electronically translated into XML/XSD schemas and these are also presented in the list below. * PDBML data files are provided in three forms: ** fully marked-up files, ** files without atom records ** files with a more space efficient encoding of atom records * Data files in PDBML format can be downloaded from the RCSB PDB website or by ftp. * Software tools for manipulating PDB data in XML format are available.
Proper citation: Protein Data Bank Markup Language (RRID:SCR_005085) Copy
http://braininfo.rprc.washington.edu
Portal to neuroanatomical information on the Web that helps you identify structures in the brain and provides a variety of information about each structure by porting you to the best of 1500 web pages at 100 other neuroscience sites. BrainInfo consists of three basic components: NeuroNames, a developing database of definitions of neuroanatomic structures in four species, their most common acronyms and their names in eight languages; NeuroMaps, a digital atlas system based on 3-D canonical stereotaxic atlases of rhesus macaque and mouse brains and programs that enable one to map data to standard surface and cross-sectional views of the brains for presentation and publication; and the NeuroMaps precursor: Template Atlas of the Primate Brain, a 2-D stereotaxic atlas of the longtailed (fascicularis) macaque brain that shows the locations of some 250 architectonic areas of macaque cortex. The NeuroMaps atlases will soon include a number of overlays showing the locations of cortical areas and other neuroscientific data in the standard frameworks of the macaque and mouse atlases. Viewers are encouraged to use NeuroNames as a stable source of unique standard terms and acronyms for brain structures in publications, illustrations and indexing systems; to use templates extracted from the NeuroMaps macaque and mouse brain atlases for presenting neuroscientific information in image format; and to use the Template Atlas for warping to MRIs or PET scans of the macaque brain to estimate the stereotaxic locations of structures.
Proper citation: BrainInfo (RRID:SCR_003142) Copy
http://www.nitrc.org/projects/msseg
Training material for the MS lesion segmentation challenge 2008 to compare different algorithms to segment the MS lesions from brain MRI scans. Data used for the workshop is composed of 54 brain MRI images and represents a range of patients and pathology which was acquired from Children's Hospital Boston and University of North Carolian. Data has initially been randomized into three groups: 20 training MRI images, 24 testing images for the qualifying and 8 for the onsite contest at the 2008 workshop. The downloadable online database consists now of the training images (including reference segmentations) and all the 32 combined testing images (without segmentations). The naming has not been changed in comparison to the workshop compeition in order to allow easy comparison between the workshop papers and the online database papers. One dataset has been removed (UNC_test1_Case02) due to considerable motion present only in its T2 image (without motion artifacts in T1 and FLAIR). Such a dataset unfairly penalizes methods that use T2 images versus methods that don't use the T2 image. Currently all cases have been segmented by expert raters at each institution. They have significant intersite variablility in segmentation. MS lesion MRI image data for this competition was acquired seperately by Children's Hospital Boston and University of North Carolina. UNC cases were acquired on Siemens 3T Allegra MRI scanner with slice thickness of 1mm and in-plane resolution of 0.5mm. To ease the segmentation process all data has been rigidly registered to a common reference frame and resliced to isotrophic voxel spacing using b-spline based interpolation. Pre-processed data is stored in NRRD format containing an ASCII readable header and a separate uncompressed raw image data file. This format is ITK compatible. If you want to join the competition, you can download data set from links here, and submit your segmentation results at http://www.ia.unc.edu/MSseg after registering your team. They require team name, password, and email address for future contact. Once experiment is completed, you can submit the segmentation data in a zip file format. Please refer submission page for uploading data format.
Proper citation: MS lesion segmentation challenge 2008 (RRID:SCR_002425) Copy
http://fmri.wfubmc.edu/software/Bpm
Software toolbox that performs SPM analysis with voxel-wise imaging covariates. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in Matlab with a user-friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely used T-field, has been implemented in the correlation analysis for more accurate results. Requirements: * SPM2 or SPM5 * MATLAB version 6.5 or higher
Proper citation: WFU Biological Parametric Mapping Toolbox (RRID:SCR_002613) Copy
Project to develop software tools and provide shared image validation databases for rigorous testing of non-rigid image registration algorithms. NIREP will extend the scope of prior validation projects by developing evaluation criteria and metrics using large image populations, using richly annotated image databases, using computer simulated data, and increasing the number and types of evaluation criteria. The goal of this project is to establish, maintain, and endorse a standardized set of relevant benchmarks and metrics for performance evaluation of nonrigid image registration algorithms. Furthermore, these standards will be incorporated into an exportable computer program to automatically evaluate the registration accuracy of nonrigid image registration algorithms.
Proper citation: Non-Rigid Image Registration Evaluation Project (RRID:SCR_002505) Copy
http://www.loni.usc.edu/Software/FFT
Java library used for the execution of discrete Fourier transforms in 1-D, 2-D and 3-D through the implementation of Fast Fourier Transform (FFT) algorithms. * The FFT library has been written in Java for portability across different platforms, integrated into a single jar file for easy implementation. * The FFT library provides forward and backward fast Fourier transforms in 1-D, 2-D and 3-D with an easy-to-use manner. * The FFT requires the length equal to a number with an integer power of two. This library automatically examines the input data and detects the length to prevent improper execution.
Proper citation: FFT Library (RRID:SCR_002698) Copy
http://www.loni.usc.edu/Software/SHIVA
A Java-based visualization and analysis application that can process 2D and 3D image files and provides convenient methods for users to overlay multiple datasets. * Simultaneous visualization of multiple image volumes. * Tools for labeling and masking of structures. * Framework for the Mouse Atlas Project.
Proper citation: Synchronized Histological Image Viewing Architecture (RRID:SCR_002690) Copy
A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.
Proper citation: 3D Slicer (RRID:SCR_005619) Copy
http://www.farsight-toolkit.org/wiki/FARSIGHT_Toolkit
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23, 2022. A collection of software modules for image data handling, pre-processing, segmentation, inspection, editing, post-processing, and secondary analysis. These modules can be scripted to accomplish a variety of automated image analysis tasks. All of the modules are written in accordance with software practices of the Insight Toolkit Community. Importantly, all modules are accessible through the Python scripting language which allows users to create scripts to accomplish sophisticated associative image analysis tasks over multi-dimensional microscopy image data. This language works on most computing platforms, providing a high degree of platform independence. Another important design principle is the use of standardized XML file formats for data interchange between modules.
Proper citation: Farsight Toolkit (RRID:SCR_001728) Copy
http://www.nesys.uio.no/Atlas3D/
A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.
Proper citation: Atlas3D (RRID:SCR_001808) Copy
http://www.neuralgate.org/download/NeuralAct
Software to visualize electrocorticographic (ECoG) and possibly also other kinds of neural activity (EEG / EMG/ DOT) on a 3D model of the cortical surface. The tool has been used to produce cortical activation images and image sequences in several recent studies using ECoG. The tool is written in matlab. The package is thoroughly documented and includes a demo.
Proper citation: NeuralAct (RRID:SCR_002066) Copy
http://bmsr.usc.edu/software/adapt/
Software tool as plug-in developed for ImageJ/FIJI platform to automatically detect and analyse cell migration and morphodynamics. Provides whole cell analysis of multiple cells, while also returning data on individual membrane protrusion events.
Proper citation: ADAPT (RRID:SCR_006769) Copy
http://www.bmu.psychiatry.cam.ac.uk/software/
Suite of programs developed for fMRI analysis in a Virtual Pipeline Laboratory facilitates combining program modules from different software packages into processing pipelines to create analysis solutions which are not possible with a single software package alone. Current pipelines include fMRI analysis, statistical testing based on randomization methods and fractal spectral analysis. Pipelines are continually being added. The software is mostly written in C. This fMRI analysis package supports batch processing and comprises the following general functions at the first level of individual image analysis: movement correction (interpolation and regression), time series modeling, data resampling in the wavelet domain, hypothesis testing at voxel and cluster levels. Additionally, there is code for second level analysis - group and factorial or ANOVA mapping - after co-registration of voxel statistic maps from individual images in a standard space. The main point of difference from other fMRI analysis packages is the emphasis throughout on the use of data resampling (permutation or randomization) as a basis for inference on individual, group and factorial test statistics at voxel and cluster levels of resolution.
Proper citation: Cambridge Brain Activation (RRID:SCR_007109) Copy
https://ida.loni.usc.edu/login.jsp
Archive used for archiving, searching, sharing, tracking and disseminating neuroimaging and related clinical data. IDA is utilized for dozens of neuroimaging research projects across North America and Europe and accommodates MRI, PET, MRA, DTI and other imaging modalities.
Proper citation: LONI Image and Data Archive (RRID:SCR_007283) Copy
http://nsr.bioeng.washington.edu/
Database of physiological, pharmacological, and pathological information on humans and other organisms and integration through computational modeling. Models include everything from diagrammatic schema, suggesting relationships among elements composing a system, to fully quantitative, computational models describing the behavior of physiological systems and an organism''s response to environmental change. Each mathematical model is an internally self-consistent summary of available information, and thereby defines a working hypothesis about how a system operates. Predictions from such models are subject to test, with new results leading to new models.BR /> A Tool developed for the NSR Physiome project is JSim, an open source, free software. JSim is a Java-based simulation system for building quantitative numeric models and analyzing them with respect to experimental reference data. JSim''s primary focus is in physiology and biomedicine, however its computational engine is quite general and applicable to a wide range of scientific domains. JSim models may intermix ODEs, PDEs, implicit equations, integrals, summations, discrete events and procedural code as appropriate. JSim''s model compiler can automatically insert conversion factors for compatible physical units as well as detect and reject unit unbalanced equations. JSim also imports the SBML and CellML model archival formats. All JSim models are open source. Goals of the Physiome Project: - To develop and database observations of physiological phenomenon and interpret these in terms of mechanism (a fundamentally reductionist goal). - To integrate experimental information into quantitative descriptions of the functioning of humans and other organisms (modern integrative biology glued together via modeling). - To disseminate experimental data and integrative models for teaching and research. - To foster collaboration amongst investigators worldwide, to speed up the discovery of how biological systems work. - To determine the most effective targets (molecules or systems) for therapy, either pharmaceutic or genomic. - To provide information for the design of tissue-engineered, biocompatible implants.
Proper citation: NSR Physiome Project (RRID:SCR_007379) Copy
Knowledge management system designed to handle neurobiological information at different levels of organization of vertebrate nervous system. Database and repository for information about neural circuitry, storing and analyzing data concerned with nomenclature, taxonomy, axonal connections, and neuronal cell types. Handles data and metadata collated from original literature, or inserted by scientists that is associated to four levels of organization of vertebrate nervous system. Data about expressed molecules, neuron types and classes, brain regions, and networks of brain regions.
Proper citation: Brain Architecture Management System (RRID:SCR_007251) Copy
https://CRAN.R-project.org/package=gma
Software package to perform Granger mediation analysis for time series. Includes single level GMA model and two-level GMA model, for time series with hierarchically nested structure.
Proper citation: GMA (RRID:SCR_009212) Copy
A viewer for medical research images that provides analysis tools and a user interface to navigate image volumes. There are three versions of Mango, each geared for a different platform: * Mango ? Desktop ? Mac OS X, Windows, and Linux * webMango ? Browser ? Safari, Firefox, Chrome, and Internet Explorer * iMango ? Mobile ? Apple iPad Key Features: * Built-in support for DICOM, NIFTI, Analyze, and NEMA-DES formats * Customizable: Create plugins, custom filters, color tables, file formats, and atlases * ROI Editing: Threshold and component-based tools for painting and tracing ROIs * Surface Rendering: Interactive surface models supporting cut planes and overlays * Image Registration: Semi-automatic image coregistration and manual transform editing * Image Stacking: Threshold and transparency-based image overlay stacking * Analysis: Histogram, cross-section, time-series analysis, image and ROI statistics * Processing: Kernel and rank filtering, arithmetic/logic image and ROI calculators
Proper citation: Mango (RRID:SCR_009603) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.