Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 9 showing 161 ~ 180 out of 2,279 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_005774

    This resource has 1+ mentions.

http://corneliu.henegar.info/FunCluster.htm

FunCluster is a genomic data analysis algorithm which performs functional analysis of gene expression data obtained from cDNA microarray experiments. Besides automated functional annotation of gene expression data, FunCluster functional analysis aims to detect co-regulated biological processes through a specially designed clustering procedure involving biological annotations and gene expression data. FunCluster''''s functional analysis relies on Gene Ontology and KEGG annotations and is currently available for three organisms: Homo Sapiens, Mus Musculus and Saccharomyces Cerevisiae. FunCluster is provided as a standalone R package, which can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix). Download it from the FunCluster website, or from the worldwide mirrors of CRAN. FunCluster is provided freely under the GNU General Public License 2.0. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FunCluster (RRID:SCR_005774) Copy   


  • RRID:SCR_005829

    This resource has 5000+ mentions.

http://www.ebi.ac.uk/Tools/pfa/iprscan/

Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.

Proper citation: InterProScan (RRID:SCR_005829) Copy   


  • RRID:SCR_005726

    This resource has 1000+ mentions.

http://toppgene.cchmc.org/

ToppGene Suite is a one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network. ToppGene Suite is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis.

Proper citation: ToppGene Suite (RRID:SCR_005726) Copy   


http://crdd.osdd.net/raghava/ccpdb/

ccPDB (Compilation and Creation of datasets from PDB) is designed to provide service to scientific community working in the field of function or structure annoation of proteins. This database of datasets is based on Protein Data Bank (PDB), where all datasets were derived from PDB. ccPDB have four modules; i) compilation of datasets, ii) creation of datasets, iii) web services and iv) Important links. * Compilation of Datasets: Datasets at ccPDB can be classified in two categories, i) datasets collected from literature and ii) datasets compiled from PDB. We are in process of collecting PDB datasetsfrom literature and maintaining at ccPDB. We are also requesting community to suggest datasets. In addition, we generate datasets from PDB, these datasets were generated using commonly used standard protocols like non-redundant chains, structures solved at high resolution. * Creation of datasets: This module developed for creating customized datasets where user can create a dataset using his/her conditions from PDB. This module will be useful for those users who wish to create a new dataset as per ones requirement. This module have six steps, which are described in help page. * Web Services: We integrated following web services in ccPDB; i) Analyze of PDB ID service allows user to submit their PDB on around 40 servers from single point, ii) BLAST search allows user to perform BLAST search of their protein against PDB, iii) Structural information service is designed for annotating a protein structure from PDB ID, iv) Search in PDB facilitate user in searching structures in PDB, v)Generate patterns service facility to generate different types of patterns required for machine learning techniques and vi) Download useful information allows user to download various types of information for a given set of proteins (PDB IDs). * Important Links: One of major objectives of this web site is to provide links to web servers related to functional annotation of proteins. In first phase we have collected and compiled these links in different categories. In future attempt will be made to collect as many links as possible.

Proper citation: ccPDB - Compilation and Creation of datasets from PDB (RRID:SCR_005870) Copy   


  • RRID:SCR_005868

    This resource has 10+ mentions.

http://utrdb.ba.itb.cnr.it/

UTRdb/UTRsite is a portal to other databases, including Nucleotide Sequence Databases, Protein Sequence Databases, other Sequence databanks, Untranslated Nucleotide Sequence Databases, Mitochondrial Databases, Mutation Databases, and others. The site also allows users to start long-term permanent projects or just to do quick searches, depending on the user''s needs.

Proper citation: UTRdb/UTRsite (RRID:SCR_005868) Copy   


  • RRID:SCR_005742

    This resource has 100+ mentions.

http://estscan.sourceforge.net/

ESTScan is a program that can detect coding regions in DNA sequences, even if they are of low quality. ESTScan will also detect and correct sequencing errors that lead to frameshifts. ESTScan is not a gene prediction program , nor is it an open reading frame detector. In fact, its strength lies in the fact that it does not require an open reading frame to detect a coding region. As a result, the program may miss a few translated amino acids at either the N or the C terminus, but will detect coding regions with high selectivity and sensitivity. ESTScan takes advantages of the bias in hexanucleotide usage found in coding regions relative to non-coding regions. This bias is formalized as an inhomogeneous 3-periodic fifth-order Hidden Markov Model (HMM). Additionally, the HMM of ESTScan has been extended to allows insertions and deletions when these improve the coding region statistics.

Proper citation: ESTScan (RRID:SCR_005742) Copy   


  • RRID:SCR_006783

    This resource has 100+ mentions.

http://www.peptideatlas.org

Multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass spectrometer output files are collected for human, mouse, yeast, and several other organisms, and searched using the latest search engines and protein sequences. All results of sequence and spectral library searching are subsequently processed through the Trans Proteomic Pipeline to derive a probability of correct identification for all results in a uniform manner to insure a high quality database, along with false discovery rates at the whole atlas level. The raw data, search results, and full builds can be downloaded for other uses. All results of sequence searching are processed through PeptideProphet to derive a probability of correct identification for all results in a uniform manner ensuring a high quality database. All peptides are mapped to Ensembl and can be viewed as custom tracks on the Ensembl genome browser. The long term goal of the project is full annotation of eukaryotic genomes through a thorough validation of expressed proteins. The PeptideAtlas provides a method and a framework to accommodate proteome information coming from high-throughput proteomics technologies. The online database administers experimental data in the public domain. You are encouraged to contribute to the database.

Proper citation: PeptideAtlas (RRID:SCR_006783) Copy   


  • RRID:SCR_006813

    This resource has 100+ mentions.

http://www.bioconductor.org/packages/2.11/bioc/html/ShortRead.html

Software package for input, quality assessment and exploration of high-throughput sequence data. Used for input, quality assurance, and basic manipulation of `short read'' DNA sequences such as those produced by Solexa, 454, and related technologies, including exible import of common short read data formats.

Proper citation: ShortRead (RRID:SCR_006813) Copy   


  • RRID:SCR_006773

    This resource has 100+ mentions.

http://www.ensemblgenomes.org/

Database portal offering integrated access to genome-scale data from non-vertebrate species of scientific interest, developed using the Ensembl genome annotation and visualization platform. Ensembl Genomes consists of five sub-portals (for bacteria, protists, fungi, plants and invertebrate metazoa) designed to complement the availability of vertebrate genomes in Ensembl. Many of the databases supporting the portal have been built in close collaboration with the scientific community - essential for maintaining the accuracy and usefulness of the resource. A common set of user interfaces (which include a graphical genome browser, FTP, BLAST search, a query optimized data warehouse, programmatic access, and a Perl API) is provided for all domains. Data types incorporated include annotation of (protein and non-protein coding) genes, cross references to external resources, and high throughput experimental data (e.g. data from large scale studies of gene expression and polymorphism visualized in their genomic context). Additionally, extensive comparative analysis has been performed, both within defined clades and across the wider taxonomy, and sequence alignments and gene trees resulting from this can be accessed through the site.

Proper citation: Ensembl Genomes (RRID:SCR_006773) Copy   


  • RRID:SCR_006794

    This resource has 50+ mentions.

https://cansar.icr.ac.uk/

canSAR is an integrated database that brings together biological, chemical, pharmacological (and eventually clinical) data. Its goal is to integrate this data and make it accessible to cancer research scientists from multiple disciplines, in order to help with hypothesis generation in cancer research and support translational research. This cancer research and drug discovery resource was developed to utilize the growing publicly available biological annotation, chemical screening, RNA interference screening, expression, amplification and 3D structural data. Scientists can, in a single place, rapidly identify biological annotation of a target, its structural characterization, expression levels and protein interaction data, as well as suitable cell lines for experiments, potential tool compounds and similarity to known drug targets. canSAR has, from the outset, been completely use-case driven which has dramatically influenced the design of the back-end and the functionality provided through the interfaces. The Web interface provides flexible, multipoint entry into canSAR. This allows easy access to the multidisciplinary data within, including target and compound synopses, bioactivity views and expert tools for chemogenomic, expression and protein interaction network data.

Proper citation: canSAR (RRID:SCR_006794) Copy   


http://redfly.ccr.buffalo.edu

Curated collection of known Drosophila transcriptional cis-regulatory modules (CRMs) and transcription factor binding sites (TFBSs). Includes experimentally verified fly regulatory elements along with their DNA sequence, associated genes, and expression patterns they direct. Submission of experimentally verified cis-regulatory elements that are not included in REDfly database are welcome.

Proper citation: REDfly Regulatory Element Database for Drosophilia (RRID:SCR_006790) Copy   


  • RRID:SCR_006791

    This resource has 10+ mentions.

https://github.com/friend1ws/EBCall

A software package for somatic mutation detection (including InDels). EBCall uses not only paired tumor/normal sequence data of a target sample, but also multiple non-paired normal reference samples for evaluating distribution of sequencing errors, which leads to an accurate mutaiton detection even in case of low sequencing depths and low allele frequencies.

Proper citation: EBCall (RRID:SCR_006791) Copy   


  • RRID:SCR_006922

    This resource has 10+ mentions.

http://bioconductor.org/packages/2.9/bioc/html/RamiGO.html

Software package with an R interface sending requests to AmiGO visualize, retrieving DAG GO trees, parsing GraphViz DOT format files and exporting GML files for Cytoscape. Also uses RCytoscape to interactively display AmiGO trees in Cytoscape.

Proper citation: RamiGO (RRID:SCR_006922) Copy   


  • RRID:SCR_006880

    This resource has 10+ mentions.

http://sourceforge.net/projects/artfastqgen/

Software to evaluate and improve the accuracy of sequencing error under different experimental conditions. It can identify which components of a system may be suboptimal and which regions of the genome may be problematic.

Proper citation: ArtificialFastqGenerator (RRID:SCR_006880) Copy   


  • RRID:SCR_006881

    This resource has 1+ mentions.

http://seqbarracuda.sourceforge.net/

A sequence mapping software that utilizes the massive parallelism of graphics processing units to accelerate the inexact alignment of short sequence reads to a particular location on a reference genome. It can align a paired-end library containing 14 million pairs of 76bp reads to the Human genome in about 27 minutes (from fastq files to SAM alignment) using a ��380 NVIDIA Geforce GTX 680*. The alignment throughput can be boosted further by using multiple GPUs (up to 8) at the same time. Being based on BWA (http://bio-bwa.sf.net) from the Sanger Institute, BarraCUDA delivers a high level of alignment fidelity and is comparable to other mainstream alignment programs. It can perform gapped alignment with gap extensions, in order to minimise the number of false variant calls in re-sequencing studies.

Proper citation: BarraCUDA (RRID:SCR_006881) Copy   


  • RRID:SCR_006937

    This resource has 10+ mentions.

http://autismkb.cbi.pku.edu.cn/

Genetic factors contribute significantly to ASD. AutismKB is an evidence-based knowledgebase of Autism spectrum disorder (ASD) genetics. The current version contains 2193 genes (99 syndromic autism related genes and 2135 non-syndromic autism related genes), 4617 Copy Number Variations (CNVs) and 158 linkage regions associated with ASD by one or more of the following six experimental methods: # Genome-Wide Association Studies (GWAS); # Genome-wide CNV studies; # Linkage analysis; # Low-scale genetic association studies; # Expression profiling; # Other low-scale gene studies. Based on a scoring and ranking system, 99 syndromic autism related genes and 383 non-syndromic autism related genes (434 genes in total) were designated as having high confidence. Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a prevalence of 1.0-2.6%. The three core symptoms of ASD are: # impairments in reciprocal social interaction; # communication impairments; # presence of restricted, repetitive and stereotyped patterns of behavior, interests and activities.

Proper citation: AutismKB (RRID:SCR_006937) Copy   


  • RRID:SCR_006951

    This resource has 1+ mentions.

http://bowtie-bio.sourceforge.net/myrna/index.shtml

A cloud computing tool for calculating differential gene expression in large RNA-seq datasets. It uses Bowtie for short read alignment and R/Bioconductor for interval calculations, normalization, and statistical testing. These tools are combined in an automatic, parallel pipeline that runs in the cloud (Elastic MapReduce in this case) on a local Hadoop cluster, or on a single computer, exploiting multiple computers and CPUs wherever possible.

Proper citation: Myrna (RRID:SCR_006951) Copy   


  • RRID:SCR_006947

    This resource has 10+ mentions.

https://github.com/jstjohn/SimSeq

An illumina paired-end and mate-pair short read simulator. This project attempts to model as many of the quirks that exist in Illumina data as possible. Some of these quirks include the potential for chimeric reads, and non-biotinylated fragment pull down in mate-pair libraries .

Proper citation: SimSeq (RRID:SCR_006947) Copy   


http://www.ebi.ac.uk/thornton-srv/databases/WSsas/

SAS is a tool for applying structural information to a given protein sequence. It uses FASTA to scan a given protein sequence against all the proteins of known 3D structure in the Protein Data Bank and provides functional residue annotation based on data from the Catalytic Site Atlas and PDBsum. The web service is aimed to facilitate the use of the SAS tool when having a huge number of queries. Currently, the web service provides annotation for binding sites (to ligand, metal or nucleic acid), catalytic residues and amino acids related to protein-protein interactions.

Proper citation: WSsas - Web Service for the SAS tool (RRID:SCR_007051) Copy   


  • RRID:SCR_007105

    This resource has 1000+ mentions.

http://weizhong-lab.ucsd.edu/cd-hit/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software program for clustering biological sequences with many applications in various fields such as making non-redundant databases, finding duplicates, identifying protein families, filtering sequence errors and improving sequence assembly etc. It is very fast and can handle extremely large databases. CD-HIT helps to significantly reduce the computational and manual efforts in many sequence analysis tasks and aids in understanding the data structure and correct the bias within a dataset. The CD-HIT package has CD-HIT, CD-HIT-2D, CD-HIT-EST, CD-HIT-EST-2D, CD-HIT-454, CD-HIT-PARA, PSI-CD-HIT, CD-HIT-OTU and over a dozen scripts. * CD-HIT (CD-HIT-EST) clusters similar proteins (DNAs) into clusters that meet a user-defined similarity threshold. * CD-HIT-2D (CD-HIT-EST-2D) compares 2 datasets and identifies the sequences in db2 that are similar to db1 above a threshold. * CD-HIT-454 identifies natural and artificial duplicates from pyrosequencing reads. * CD-HIT-OTU cluster rRNA tags into OTUs The usage of other programs and scripts can be found in CD-HIT user''s guide. CD-HIT was originally developed by Dr. Weizhong Li at Dr. Adam Godzik''s Lab at the Burnham Institute (now Sanford-Burnham Medical Research Institute)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: CD-HIT (RRID:SCR_007105) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SPARC Anatomical Working Group Resources

    Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within SPARC SAWG that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X