Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 9 showing 161 ~ 180 out of 526 results
Snippet view Table view Download 526 Result(s)
Click the to add this resource to a Collection

http://www.nimh.nih.gov/educational-resources/index.shtml

A portal to educational resources.

Proper citation: NIMH Educational Resources (RRID:SCR_004045) Copy   


  • RRID:SCR_004500

    This resource has 1+ mentions.

http://kingdevicktest.com/

An accurate and reliable method for identifying athletes with head trauma, and a strong candidate rapid sideline screening test for concussion. The test is able to capture impairments of eye movement, attention, language and other symptoms of impaired brain function. It is a physical method of evaluating visual tracking and saccadic eye movements is based on the time to perform rapid number naming. It involves reading aloud a series of single digit numbers from left to right on three test cards. Participants are asked to read the numbers on each card from left to right as quickly as possible but without making any errors. The sum of the three test card time scores constitutes the summary score for the entire test. The test is a proven indicator of oculomotor inefficiencies regarding eye movements during reading. Published medical studies have determined that deficiencies in saccadic eye movements can be an indicator of mild Traumatic Brain Injury (mTBI) or concussions. Studies have shown that there is a significant relationship between poor oculomotor functions and learning disabilities (including dyslexia detection). Saccadic eye movement deficiencies can be improved with training and correspondingly reading performance also can be improved. Simply put, subjects who don''t perform well on this test are not efficient readers, although because there are many reasons for poor reading unrelated to eye movements, some poor readers do fine on the test. They believe that the test should be in the hands of teachers in order to help them determine if a student''s poor reading performance is related to deficiencies in their ability to move their eyes efficiently.

Proper citation: King-Devick Test (RRID:SCR_004500) Copy   


http://neuroandpsych.slu.edu/

The Department of Neurology & Psychiatry aims to 1) provide the best psychiatric and neurological care to patients and their families, 2) discover and investigate new treatments for psychiatric and nervous system disorders, 3) study psychosocial processes in psychiatric and neurological illness, and 4) educate the next generation of practitioners, as well as our patients and the lay community. The Department of Neurology & Psychiatry (DNP) was established on June 1, 2007. The Department has 34 faculty members and is planning continued expansion. There are 7 psychiatrists, 18 neurologists, 4 child neurologists, and 5 NIH-supported PhD investigators. The DNP is one of five departments in the country that combines the disciplines of neurology and psychiatry. We are unique in having two strong residency programs and are the only that attempts to establish a new paradigm in care of patients with neurological and psychiatric disease through co-management initiatives. * Division of Psychiatry: The Psychiatrists work within four areas: Adult, Geriatric, Community, and Forensic Psychiatry. * Division of Neurology: The division has an extremely active stroke/intensive care and general neurology service. We are expanding services in neurocritical care and interventional neurology. * Education: The DNP has approximately 25 residents/fellows in each discipline. * Research: The DNP has robust programs in clinical, basic, and translational research. We emphasize 3 areas in this overview of the DNP. ** Clinical Research Unit ** Psychosocial Processes Group ** Translational Neuromuscular Disease VISION STATEMENT All members of the Saint Louis University Department of Neurology & Psychiatry will collaborate to support state-of-the-art neurological and psychiatric education, compassionate patient care, and a growing research enterprise. The Department will develop the most exciting intellectual environment in the Nation for investigation, treatment, and training in psychiatry and neurology. We will fulfill this Vision in an environment of mutual respect and collaboration.

Proper citation: St. Louis University Department of Neurology and Psychiatry (RRID:SCR_004297) Copy   


  • RRID:SCR_004240

http://www.abc.net.au/rn/allinthemind/default.htm

Radio National''s weekly foray into all things mental a program (podcast) about the mind, brain and behavior, hosted by Lynne Malcolm (previously by Natasha Mitchell). From dreaming to depression, addiction to artificial intelligence, consciousness to coma, psychoanalysis to psychopathy, free will to forgetting ��All in the Mind��explores the human condition through the mind''s eye. All in the Mind brings together unexpected voices, themes and ideas and engages with both leading thinkers and personal stories. Psychology and human behavior are only part of the equation. The program''s scope is considerably broader and explores themes in science, religion, health, philosophy, education, history and pop culture, with the mind as the key focus.

Proper citation: All In The Mind (RRID:SCR_004240) Copy   


  • RRID:SCR_004232

    This resource has 1+ mentions.

http://openconnectomeproject.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. Connectomes repository to facilitate the analysis of connectome data by providing a unified front for connectomics research. With a focus on Electron Microscopy (EM) data and various forms of Magnetic Resonance (MR) data, the project aims to make state-of-the-art neuroscience open to anybody with computer access, regardless of knowledge, training, background, etc. Open science means open to view, play, analyze, contribute, anything. Access to high resolution neuroanatomical images that can be used to explore connectomes and programmatic access to this data for human and machine annotation are provided, with a long-term goal of reconstructing the neural circuits comprising an entire brain. This project aims to bring the most state-of-the-art scientific data in the world to the hands of anybody with internet access, so collectively, we can begin to unravel connectomes. Services: * Data Hosting - Their Bruster (brain-cluster) is large enough to store nearly any modern connectome data set. Contact them to make your data available to others for any purpose, including gaining access to state-of-the-art analysis and machine vision pipelines. * Web Viewing - Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID) is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by Google Maps, enhanced to allow the exploration of 3D image data. View the fork of the code or go directly to view the data. * Volume Cutout Service - RESTful API that enables you to select any arbitrary volume of the 3d database (3ddb), and receive a link to download an HDF5 file (for matlab, C, C++, or C#) or a NumPy pickle (for python). Use some other programming language? Just let them know. * Annotation Database - Spatially co-registered volumetric annotations are compactly stored for efficient queries such as: find all synapses, or which neurons synapse onto this one. Create your own annotations or browse others. *Sample Downloads - In addition to being able to select arbitrary downloads from the datasets, they have also collected a few choice volumes of interest. * Volume Viewer - A web and GPU enabled stand-alone app for viewing volumes at arbitrary cutting planes and zoom levels. The code and program can be downloaded. * Machine Vision Pipeline - They are building a machine vision pipeline that pulls volumes from the 3ddb and outputs neural circuits. - a work in progress. As soon as we have a stable version, it will be released. * Mr. Cap - The Magnetic Resonance Connectome Automated Pipeline (Mr. Cap) is built on JIST/MIPAV for high-throughput estimation of connectomes from diffusion and structural imaging data. * Graph Invariant Computation - Upload your graphs or streamlines, and download some invariants. * iPad App - WholeSlide is an iPad app that accesses utilizes our open data and API to serve images on the go.

Proper citation: Open Connectome Project (RRID:SCR_004232) Copy   


http://www.cvrgrid.org/

Infrastructure for sharing cardiovascular data and data analysis tools. Human ExVivo heart data set and canine ExVivo normal and failing heart data sets are available. Canine hearts atlas and human InVivo atlases are available.

Proper citation: CardioVascular Research Grid (CVRG) (RRID:SCR_004472) Copy   


http://learn.genetics.utah.edu/content/addiction/

A physiologic and molecular look at drug addiction involving many factors including: basic neurobiology, a scientific examination of drug action in the brain, the role of genetics in addiction, and ethical considerations. Designed to be used by students, teachers and members of the public, the materials meet selected US education standards for science and health. Drug addiction is a chronic disease characterized by changes in the brain which result in a compulsive desire to use a drug. A combination of many factors including genetics, environment and behavior influence a person's addiction risk, making it an incredibly complicated disease. The new science of addiction considers all of these factors - from biology to family - to unravel the complexities of the addicted brain. * Natural Reward Pathways Exist in the Brain: The reward pathway is responsible for driving our feelings of motivation, reward and behavior. * Drugs Alter the Brain's Reward Pathway: Drugs work over time to change the reward pathway and affect the entire brain, resulting in addiction. * Genetics Is An Important Factor In Addiction: Genetic susceptibility to addiction is the result of the interaction of many genes. * Timing and Circumstances Influence Addiction: If you use drugs when you are an adolescent, you are more likely to develop lifetime addiction. An individual's social environment also influences addiction risk. * Challenges and Issues in Addiction: Addiction impacts society with many ethical, legal and social issues.

Proper citation: New Science of Addiction: Genetics and the Brain (RRID:SCR_002770) Copy   


  • RRID:SCR_002793

    This resource has 10+ mentions.

http://www.cognitiveatlas.org/

Knowledge base (or ontology) that characterizes the state of current thought in cognitive science that captures knowledge from users with expertise in psychology, cognitive science, and neuroscience. There are two basic kinds of knowledge in the knowledge base. Terms provide definitions and properties for individual concepts and tasks. Assertions describe relations between terms in the same way that a sentence describes relations between parts of speech. The goal is to develop a knowledge base that will support annotation of data in databases, as well as supporting improved discourse in the community. It is open to all interested researchers. A fundamental feature of the knowledge base is the desire and ability to capture not just agreement but also disagreement regarding definitions and assertions. Thus, if you see a definition or assertion that you disagree with, then you can assert and describe your disagreement. The project is led by Russell Poldrack, Professor of Psychology and Neurobiology at the University of Texas at Austin in collaboration with the UCLA Center for Computational Biology (A. Toga, PI) and UCLA Consortium for Neuropsychiatric Phenomics (R. Bilder, PI). Most tasks used in cognitive psychology research are not identical across different laboratories or even within the same laboratory over time. A major advantage of anchoring cognitive ontologies to the measurement level is that the strategy for determining changes in task properties is easier than tracking changes in concept definitions and usage. The process is easier because task parameters are usually (if not always) operationalized objectively, offering a clear basis to judge divergence in methods. The process is also easier because most tasks are based on prior tasks, and thus can more readily be considered descendants in a phylogenetic sense.

Proper citation: Cognitive Atlas (RRID:SCR_002793) Copy   


http://www.vph-noe.eu/

The VPH NoE is a project which aims to help support and progress European research in biomedical modeling and simulation of the human body. This project will improve our ability to predict, diagnose and treat disease, and have a dramatic impact on the future of healthcare, the pharmaceutical and medical device industries. The VPH Network of Excellence (VPH NoE) is designed to foster, harmonize and integrate pan-European research in the field of i) patient-specific computer models for personalised and predictive healthcare and ii) ICT-based tools for modeling and simulation of human physiology and disease-related processes. The main objectives of the VPH Network of Excellence are to support the: :- Coordination of research portfolios of VPH NoE partners through initiation of Exemplar integrative research projects that encourage inter-institution and interdisciplinary VPH research; :- Integration of research infrastructures of VPH NoE partners through development of the VPH ToolKit: a shared and mutually accessible source of research equipment, managerial and research infrastructures, facilities and services; :- Development of a portfolio of interdisciplinary training activities including a formal consultation on, and assessment of, VPH careers; :- Establishment of a core set of VPH-related dissemination and networking activities which will engage everyone from partners within the VPH NoE/other VPH projects, to national policy makers, to the public at large; :- Creation of Industrial, Clinical and Scientific Advisory Boards that will jointly guide the direction of the VPH NoE and, through consultation, explore the practical and legal options for real and durable integration within the VPH research community; :- Implementation of key working groups that will pursue specific issues relating to VPH, notably integrating VPH research worldwide through international physiome initiatives. Finally, by involving clinical and industrial stakeholders, VPH NoE also plans to lay a reliable ground to support sustainable interactions and collaboration between research and healthcare communities. Virtual Physiological Human lists, as its main target outcome, patient-specific computer models for personalized and predictive healthcare and ICT-based tools for modeling and simulation of human physiology and disease-related processes. Collaborative projects (IPs and STREPs) within the call will meet specific objectives, addressing: patient-specific computational modeling and simulation of organs or systems data integration and new knowledge extraction and clinical applications and demonstration of tangible benefits of patient-specific computational models. The networking action outlined within the call - the VPH NoE - should serve to connect these efforts, and lay the foundations for the methodological and technical framework to support such research. It should also build on previous EC investment in this field, including the outcomes of VPH type' projects funded within the EU Sixth Framework Programme, and through other National and International initiatives. The Virtual Physiological Human Network of Excellence (VPH NoE) has been designed with "service to the community" of VPH researchers as its primary purpose. Its aims range from the development of a VPH ToolKit and associated infrastructural resources, through integration of models and data across the various relevant levels of physiological structure and functional organization, to VPH community building and support. The VPH NoE aims to foster the development of new and sustainable educational, training and career structures for those involved in VPH related science, technology and medicine. The VPH NoE constitutes a leading group of universities, institutes and organizations who will, by integrating their experience and ongoing activities in VPH research, promote the creation of an environment that actively supports and nurtures interdisciplinary research, education, training and strategic development. The VPH NoE will lead the coordination of diverse activities within the VPH Initiative to help deliver: new environments for predictive, patient-specific, evidence-based, more effective and safer healthcare; improved semantic interoperability of biomedical information and contribution to a common health information infrastructure; facile, on-demand access to distributed European computational infrastructure to support clinical decision making; and increased European multidisciplinary research excellence in biomedical informatics and molecular medicine by fostering closer cooperation between ICT, medical device, medical imaging, pharmaceutical and biotech companies. The VPH NoE will connect the diverse VPH Initiative projects, including not only those funded as part of the VPH initiative but also those of previous EC frameworks and national funding schemes, together with industry, healthcare providers, and international organizations, thereby ensuring that these impacts will be realized. VPH NoE work packages and project structure The VPH NoE activities are divided between five main work packages (follow the links at the top of the page for more information on each). In brief, the focus of each work package is as follows: -Work package 1: Network Management -Work package 2: VPH NoE Exemplar Projects -Work package 3: VPH NoE ToolKit development -Work package 4: VPH NoE Training and Career Development -Work package 5: Spreading Excellence within the VPH NoE and VPH-I In view of its role as the networking action for the VPH Initiative, all VPH NoE activities have been designed to serve and interconnect not only the VPH NoE core members, but also the projects funded within the VPH call (VPH-I) and the wider research community. Key activities which the VPH NoE will pursue, in support of the development of a research environment which facilitates integrative, interdisciplinary and multilevel VPH research, are: -Support for integrative research -Training and dissemination activities -Networking activities Sponsors: VPH NoE is supported by The Directorate-General Research (DG RTD) and The Directorate-General Information Society and Media (DG INFSO).

Proper citation: Virtual Physiological Human Network of Excellence (RRID:SCR_002855) Copy   


  • RRID:SCR_002850

    This resource has 50+ mentions.

http://www.ambystoma.org/

Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.

Proper citation: Sal-Site (RRID:SCR_002850) Copy   


http://cbio.mskcc.org/

Computational biology research at Memorial Sloan-Kettering Cancer Center (MSKCC) pursues computational biology research projects and the development of bioinformatics resources in the areas of: sequence-structure analysis; gene regulation; molecular pathways and networks, and diagnostic and prognostic indicators. The mission of cBio is to move the theoretical methods and genome-scale data resources of computational biology into everyday laboratory practice and use, and is reflected in the organization of cBio into research and service components ~ the intention being that new computational methods created through the process of scientific inquiry should be generalized and supported as open-source and shared community resources. Faculty from cBio participate in graduate training provided through the following graduate programs: * Gerstner Sloan-Kettering Graduate School of Biomedical Sciences * Graduate Training Program in Computational Biology and Medicine Integral to much of the research and service work performed by cBio is the creation and use of software tools and data resources. The tools that we have created and utilize provide evidence of our involvement in the following areas: * Cancer Genomics * Data Repositories * iPhone & iPod Touch * microRNAs * Pathways * Protein Function * Text Analysis * Transcription Profiling

Proper citation: Computational Biology Center (RRID:SCR_002877) Copy   


http://www.ouhsc.edu/compmed/documents/DevelopmentofaSpecificPathogenFreeBaboonColony.pdf

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 4th,2023. Program developing a self-sustaining colony of baboons free of all known herpesviruses, four retroviruses, and SV40 for research. When the program is fully developed, they will provide healthy, behaviorally normal, SPF baboons that are free of all known herpes viruses, four retroviruses, and SV40. To accomplish this goal, the center has established in collaboration with co-investigators and consultants serological and PCR tests for each of the 11 target viruses. These baboon viruses include six herpesviruses (analogs of human HSV, VZV, CMV, HHV6, EBV, and HHV8), four retroviruses (simian foamy virus, SRV/D, SIV, and STLV), and SV40. Twenty-four infant baboons are being recruited into the SPF program in each of the first five years, for a final total of at least 66 SPF baboons. All infants will be repeatedly tested for each of the target viruses. At one month of age, larger social groups of 4-6 SPF animals are formed. Beginning at 2-3 years of age, SPF animals will be integrated into larger socially compatible groups. These groups will eventually mature into breeding harems of SPF animals. This approach provides infants with age-matched companions for socialization during their early period of development, minimizes opportunities for transmission of viruses to the infants from adult animals, and allows for the simultaneous elimination of many different viruses from SPF animals.

Proper citation: Development of a Specific-Pathogen-Free Baboon Colony (RRID:SCR_002900) Copy   


https://www.msu.edu/~brains/index.html

The Brain Biodiversity Bank refers to the repository of images of and information about brain specimens contained in the collections associated with the National Museum of Health and Medicine at the Armed Forces Institute of Pathology in Washington, DC. Atlases and brain sections are available for a variety of mammals, and we are also developing a series of labeled atlases of stained sections for educators, students, and researchers. These collections include, besides the Michigan State University Collection, the Welker Collection from the University of Wisconsin, the Yakovlev-Haleem Collection from Harvard University, the Meyer Collection from the Johns Hopkins University, and the Huber-Crosby and Crosby-Lauer Collections from the University of Michigan. What we are doing currently at Michigan State is a series of demonstration projects for publicizing the contents of the collections and ways in which they can be used. For example, the images from the collection can be used for comparative brain study. We have prepared databases of the contents of the collections for presentation and use on this site, as well as for downloading by users in several formats. We are also developing a series of labeled atlases of stained sections for educators, students, and researchers. This internet site is associated with the Comparative Mammalian Brain Collections site. All of the images are in JPEG or GIF format.

Proper citation: Michigan State University Brain Biodiversity Bank (RRID:SCR_003289) Copy   


https://www.nia.nih.gov/alzheimers

Portal for Alzheimer's disease that compiles, archives and disseminates information about current treatments, diagnostic tools and ongoing research for health professions, people with AD, their families and the public. The Center provides informational services and referrals for AD symptoms, diagnosis and treatment for patients; clinical trial information and literature searches for researchers; training materials and guidelines for caregivers; and Spanish language resources.

Proper citation: Alzheimer's Disease Education and Referral Center (RRID:SCR_012787) Copy   


  • RRID:SCR_012773

    This resource has 10000+ mentions.

http://www.kegg.jp/

Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.

Proper citation: KEGG (RRID:SCR_012773) Copy   


https://omictools.com/l2l-tool

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 26, 2019.

Database of published microarray gene expression data, and a software tool for comparing that published data to a user''''s own microarray results. It is very simple to use - all you need is a web browser and a list of the probes that went up or down in your experiment. If you find L2L useful please consider contributing your published data to the L2L Microarray Database in the form of list files. L2L finds true biological patterns in gene expression data by systematically comparing your own list of genes to lists of genes that have been experimentally determined to be co-expressed in response to a particular stimulus - in other words, published lists of microarray results. The patterns it finds can point to the underlying disease process or affected molecular function that actually generated the observed changed in gene expression. Its insights are far more systematic than critical gene analyses, and more biologically relevant than pure Gene Ontology-based analyses. The publications included in the L2L MDB initially reflected topics thought to be related to Cockayne syndrome: aging, cancer, and DNA damage. Since then, the scope of the publications included has expanded considerably, to include chromatin structure, immune and inflammatory mediators, the hypoxic response, adipogenesis, growth factors, hormones, cell cycle regulators, and others. Despite the parochial origins of the database, the wide range of topics covered will make L2L of general interest to any investigator using microarrays to study human biology. In addition to the L2L Microarray Database, L2L contains three sets of lists derived from Gene Ontology categories: Biological Process, Cellular Component, and Molecular Function. As with the L2L MDB, each GO sub-category is represented by a text file that contains annotation information and a list of the HUGO symbols of the genes assigned to that sub-category or any of its descendants. You don''''t need to download L2L to use it to analyze your microarray data. There is an easy-to-use web-based analysis tool, and you have the option of downloading your results so you can view them at any time on your own computer, using any web browser. However, if you prefer, the entire L2L project, and all of its components, can be downloaded from the download page. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: L2L Microarray Analysis Tool (RRID:SCR_013440) Copy   


http://www.viprbrc.org/brc/home.do?decorator=vipr

Provides searchable public repository of genomic, proteomic and other research data for different strains of pathogenic viruses along with suite of tools for analyzing data. Data can be shared, aggregated, analyzed using ViPR tools, and downloaded for local analysis. ViPR is an NIAID-funded resource that support the research of viral pathogens in the NIAID Category A-C Priority Pathogen lists and those causing (re)emerging infectious diseases. It provides a dedicated gateway to SARS-CoV-2 data that integrates data from external sources (GenBank, UniProt, Immune Epitope Database, Protein Data Bank), direct submissions, analysis pipelines and expert curation, and provides a suite of bioinformatics analysis and visualization tools for virology research.

Proper citation: Virus Pathogen Resource (ViPR) (RRID:SCR_012983) Copy   


  • RRID:SCR_014442

    This resource has 1+ mentions.

https://www.rebuildingakidney.org

A consortium of research projects working to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and their integration into complex structures that replicate human kidney function. Their goal is to coordinate and integrate research to support the development and implementation of strategies such as de novo repair of nephrons, the re-generation of nephrons, and the in vitro engineering of a biological kidney to enhance renal repair and promote the generation of new nephrons in the postnatal organ. Investigators may apply for funding of a kidney-related project through the RBK Partnership Project. Funded projects would join the consortium.

Proper citation: ReBuilding a Kidney (RRID:SCR_014442) Copy   


  • RRID:SCR_014576

    This resource has 10+ mentions.

http://www.brainsimagebank.ac.uk

A searchable collection of anonymised images and associated clinical data. It includes normal individuals at all ages (from prenatal to old age). The image bank contains integrated data sets already collected as part of research studies which include control subjects. New data is added as they become available.

Proper citation: BRAINS Imagebank (RRID:SCR_014576) Copy   


http://cerebrovascularportal.org

Portal enables browsing, searching, and analysis of human genetic information linked to cerebrovascular disease and related traits, while protecting the integrity and confidentiality of the underlying data.

Proper citation: Cerebrovascular Disease Knowledge Portal (RRID:SCR_015628) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SPARC Anatomical Working Group Resources

    Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within SPARC SAWG that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X