Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.nitrc.org/projects/voxbo
Software package for brain image manipulation and analysis, focusing on fMRI and lesion analysis. VoxBo can be used independently or in conjunction with other packages. It provides GLM-based statistical tools, an architecture for interoperability with other tools (they encourage users to incorporate SPM and FSL into their processing pipelines), an automation system, a system for parallel distributed computing, numerous stand-alone tools, decent wiki-based documentation, and lots more.
Proper citation: VoxBo (RRID:SCR_002166) Copy
https://www.humanbrainproject.eu/
Global, collaborative effort for neuroscience, medicine and computing to understand brain, its diseases and its computational capabilities. Goal is to obtain access to research, data sources, platforms and infrastructures offered by other organisations, and enabling organizations outside HBP to use HBP platforms to pursue their own research. Coordinating these activities is the responsibility of the European Research Programme.
Proper citation: Human Brain Project EU (RRID:SCR_002241) Copy
http://olympus.magnet.fsu.edu/galleries/ratbrain/index.html
An image gallery of the rat brain labeled via immunofluorescence in coronal, horizontal, and sagittal thick sections using laser scanning confocal microscopy.
Proper citation: Confocal Microscopy Image Gallery - Rat Brain Tissue Sections (RRID:SCR_002432) Copy
http://www.nitrc.org/projects/msseg
Training material for the MS lesion segmentation challenge 2008 to compare different algorithms to segment the MS lesions from brain MRI scans. Data used for the workshop is composed of 54 brain MRI images and represents a range of patients and pathology which was acquired from Children's Hospital Boston and University of North Carolian. Data has initially been randomized into three groups: 20 training MRI images, 24 testing images for the qualifying and 8 for the onsite contest at the 2008 workshop. The downloadable online database consists now of the training images (including reference segmentations) and all the 32 combined testing images (without segmentations). The naming has not been changed in comparison to the workshop compeition in order to allow easy comparison between the workshop papers and the online database papers. One dataset has been removed (UNC_test1_Case02) due to considerable motion present only in its T2 image (without motion artifacts in T1 and FLAIR). Such a dataset unfairly penalizes methods that use T2 images versus methods that don't use the T2 image. Currently all cases have been segmented by expert raters at each institution. They have significant intersite variablility in segmentation. MS lesion MRI image data for this competition was acquired seperately by Children's Hospital Boston and University of North Carolina. UNC cases were acquired on Siemens 3T Allegra MRI scanner with slice thickness of 1mm and in-plane resolution of 0.5mm. To ease the segmentation process all data has been rigidly registered to a common reference frame and resliced to isotrophic voxel spacing using b-spline based interpolation. Pre-processed data is stored in NRRD format containing an ASCII readable header and a separate uncompressed raw image data file. This format is ITK compatible. If you want to join the competition, you can download data set from links here, and submit your segmentation results at http://www.ia.unc.edu/MSseg after registering your team. They require team name, password, and email address for future contact. Once experiment is completed, you can submit the segmentation data in a zip file format. Please refer submission page for uploading data format.
Proper citation: MS lesion segmentation challenge 2008 (RRID:SCR_002425) Copy
http://millette.med.sc.edu/Lab%209%2610/histology_of_nervous_tissue.htm
A website for a neuroscience lab class from the University of South Carolina that contains images of different parts of the nervous system and allows students to identify each part and answer questions about it. You should be able to (a) recognize nervous tissue in routine histological sections; (b) distinguish peripheral nerves from dense CT and smooth muscle; (c) recognize the morphological differences between myelinated and unmyelinated nerves at both the light microscopic and electron microscopic levels; (d) recognize nerve cell bodies and their component parts; (e) identify and differentiate dendrites and axons; (f) understand and identify various types of neuroglia, including Schwann cells; (g) understand and identify the structural relationship of the Schwann cell cytoplasm and plasma membrane enveloping axons; (h) understand the general features of nerve synapses. You should be able to draw nerves, cell bodies, Nodes of Ranvier, synapses etc. as they would appear under both the electron and light microscopes.
Proper citation: Histology of Nervous Tissue Laboratory Course (RRID:SCR_002367) Copy
A toolbox with graphical user interfaces for processing infant brain MR images. Longitudinal (or single-time-point) multimodality (including T1, T2, and FA) (or single-modality) data can be processed using the toolbox. Main functions of the software (step by step) include image preprocessing, brain extraction, tissue segmentation and brain labeling. Linux operating system (64 bit) is required. A workstation or server with memory >8G is recommended for processing many images simutaneously. The graphical user interfaces and overall framework of the software are implemented in MATLAB. The image processing functions are implemented with the combination of C/C++, MATLAB, Perl and Shell languages. Parallelization technologies are used in the software to speed up image processing.
Proper citation: iBEAT (RRID:SCR_002470) Copy
http://learn.genetics.utah.edu/content/addiction/
A physiologic and molecular look at drug addiction involving many factors including: basic neurobiology, a scientific examination of drug action in the brain, the role of genetics in addiction, and ethical considerations. Designed to be used by students, teachers and members of the public, the materials meet selected US education standards for science and health. Drug addiction is a chronic disease characterized by changes in the brain which result in a compulsive desire to use a drug. A combination of many factors including genetics, environment and behavior influence a person's addiction risk, making it an incredibly complicated disease. The new science of addiction considers all of these factors - from biology to family - to unravel the complexities of the addicted brain. * Natural Reward Pathways Exist in the Brain: The reward pathway is responsible for driving our feelings of motivation, reward and behavior. * Drugs Alter the Brain's Reward Pathway: Drugs work over time to change the reward pathway and affect the entire brain, resulting in addiction. * Genetics Is An Important Factor In Addiction: Genetic susceptibility to addiction is the result of the interaction of many genes. * Timing and Circumstances Influence Addiction: If you use drugs when you are an adolescent, you are more likely to develop lifetime addiction. An individual's social environment also influences addiction risk. * Challenges and Issues in Addiction: Addiction impacts society with many ethical, legal and social issues.
Proper citation: New Science of Addiction: Genetics and the Brain (RRID:SCR_002770) Copy
The long range goal of this laboratory is to understand the computational resources of brains from the biophysical to the systems levels. The central issues being addressed are how dendrites integrate synaptic signals in neurons, how networks of neurons generate dynamical patterns of activity, how sensory information is represented in the cerebral cortex, how memory representations are formed and consolidated during sleep, and how visuo-motor transformations are adaptively organized. Additionally, new techniques have been developed for modeling cell signaling using Monte Carlo methods (MCell) and the blind separation of brain imaging data into functionally independent components (ICA).
Proper citation: Computational Neurobiology Laboratory at the Salk Institute (RRID:SCR_002809) Copy
http://www.cnsforum.com/educationalresources/imagebank/
A collection of downloadable central nervous system (CNS) images for teaching, presentations, articles, and other purposes. The following major categories of images are as follows: Brain anatomy, Brain physiology, Anxiety, Depression, Schizophrenia, Dementia, Parkinson's disease, Stroke, and Others.
Proper citation: CNSforum: Image Bank (RRID:SCR_002718) Copy
http://www.fmrib.ox.ac.uk/fsl/
Software library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. Include registration, atlases, diffusion MRI tools for parameter reconstruction and probabilistic taractography, and viewer. Several brain atlases, integrated into FSLView and Featquery, allow viewing of structural and cytoarchitectonic standard space labels and probability maps for cortical and subcortical structures and white matter tracts. Includes Harvard-Oxford cortical and subcortical structural atlases, Julich histological atlas, JHU DTI-based white-matter atlases, Oxford thalamic connectivity atlas, Talairach atlas, MNI structural atlas, and Cerebellum atlas.
Proper citation: FSL (RRID:SCR_002823) Copy
The Rodent Brain WorkBench is the portal to atlases, databases and tools developed by the Neural Systems and Graphics Computing Laboratory (NeSys) at the Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo, Oslo, Norway. The Rodent Brain WorkBench presents a collection of brain mapping and atlasing oriented database applications and tools. The main category of available data is high resolution mosaic images covering complete histological sections through the rat and mouse brain. A highly structured relational database system for archiving, retrieving, viewing, and analysing microscopy and imaging data, aiming at presentation in standardized brain atlas space, is used to present a series of web applications for individual research projects. * Brain Connectivity * Atlases of Mouse Brain Promoter Gene Expression * General Brain Atlas and Navigation Systems * Downloadable tools for 3-DVisualization Open Access: * Atlas 3D * Cerebro-Cerebellar I * Cerebro-Cerebellar II * Neurotransporter Atlas * Rat Hippocampus * Tet-Off Atlas I (PrP) * Tet-Off Atlas II (PrP/CamKII) * Whole Brain Connectivity Atlas The data presented have been produced in collaboration with a large number of laboratories in Europe and the United States.
Proper citation: Rodent Brain WorkBench (RRID:SCR_002727) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on May 11, 2016. Repository of brain-mapping data (surfaces and volumes; structural and functional data) derived from studies including fMRI and MRI from many laboratories, providing convenient access to a growing body of neuroimaging and related data. WebCaret is an online visualization tool for viewing SumsDB datasets. SumsDB includes: * data on cerebral cortex and cerebellar cortex * individual subject data and population data mapped to atlases * data from FreeSurfer and other brainmapping software besides Caret SumsDB provides multiple levels of data access and security: * Free (public) access (e.g., for data associated with published studies) * Data access restricted to collaborators in different laboratories * Owner-only access for work in progress Data can be downloaded from SumsDB as individual files or as bundles archived for offline visualization and analysis in Caret WebCaret provides online Caret-style visualization while circumventing software and data downloads. It is a server-side application running on a linux cluster at Washington University. WebCaret "scenes" facilitate rapid visualization of complex combinations of data Bi-directional links between online publications and WebCaret/SumsDB provide: * Links from figures in online journal article to corresponding scenes in WebCaret * Links from metadata in WebCaret directly to relevant online publications and figures
Proper citation: SumsDB (RRID:SCR_002759) Copy
http://sncid.stanleyresearch.org/
A database of 1749 neuropathological markers measured in 12 different brain regions from 60 brains in the Consortium Collection from the Stanley Medical Research Institute combined with microarray data and statistical tools. Fifteen brains each are from patients diagnosed with schizophrenia, bipolar disorder, or major depression, and unaffected controls. The four groups are matched by age, sex, race, postmortem interval, pH, side of brain, and mRNA quality. A Repository of raw data is also included. Users must register for access.
Proper citation: Stanley Neuropathology Consortium Integrative Database (RRID:SCR_002749) Copy
An MRI data repository that holds a set of 7 Tesla images and behavioral metadata. Multi-faceted brain image archive with behavioral measurements. For each participant a number of different scans and auxiliary recordings have been obtained. In addition, several types of minimally preprocessed data are also provided. The full description of the data release is available in a dedicated publication. This project invites anyone to participate in a decentralized effort to explore the opportunities of open science in neuroimaging by documenting how much (scientific) value can be generated out of a single data release by publication of scientific findings derived from a dataset, algorithms and methods evaluated on this dataset, and/or extensions of this dataset by acquisition and integration of new data.
Proper citation: studyforrest.org (RRID:SCR_003112) Copy
Flytrap is an interactive database for displaying gene expression patterns, in particular P(GAL4) patterns, via an intuitive WWW based interface. This development consists of two components, the first being the HTML interface to the database and the second, a tool-kit for constructing and maintaining the database. The browser component of the project is entirely platform independent; based on javascript and HTML and therefore only requires a "standard" browser. This is to facilitate CD-ROM distribution and off-line browsing. Whether on-line or on CD, the basic browser structure does not reply on any server based scripts. Basic searching is now available. The search page uses javascript and will work off-line (i.e. from a CD-ROM copy). The construction tool-kit is UNIX based and requires an on-line web server. The tool-kit is used to compile the HTML browser interface from a simple database. The tool-kit part comprises a forms based HTML interface to the datasets allowing new information to b e added and updated very simply. We are also developing a java interface for the tool-kit that will enable us to edit and annotate images on-line. The basic browser interface is complete and a demonstration version can be accessed via the website. The first working version of the tool-kit is now on-line and is available for use.
Proper citation: flytrap (RRID:SCR_003075) Copy
A community database of published functional and structural neuroimaging experiments with both metadata descriptions of experimental design and activation locations in the form of stereotactic coordinates (x,y,z) in Talairach or MNI space. BrainMap provides not only data for meta-analyses and data mining, but also distributes software and concepts for quantitative integration of neuroimaging data. The goal of BrainMap is to develop software and tools to share neuroimaging results and enable meta-analysis of studies of human brain function and structure in healthy and diseased subjects. It is a tool to rapidly retrieve and understand studies in specific research domains, such as language, memory, attention, reasoning, emotion, and perception, and to perform meta-analyses of like studies. Brainmap contains the following software: # Sleuth: database searches and Talairach coordinate plotting (this application requires a username and password) # GingerALE: performs meta-analyses via the activation likelihood estimation (ALE) method; also converts coordinates between MNI and Talairach spaces using icbm2tal # Scribe: database entry of published functional neuroimaging papers with coordinate results
Proper citation: brainmap.org (RRID:SCR_003069) Copy
The Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) supports researchers and our surrounding community in their pursuit of answers that will lead to improved diagnosis and care for persons with Alzheimer disease (AD). The Center is committed to the long-term goal of finding a way to effectively treat and prevent AD. The Knight ADRC facilitates advanced research on the clinical, genetic, neuropathological, neuroanatomical, biomedical, psychosocial, and neuropsychological aspects of Alzheimer disease, as well as other related brain disorders.
Proper citation: Washington University School of Medicine Knight Alzheimers Disease Research Center (RRID:SCR_000210) Copy
https://resource.loni.usc.edu/resources/atlases/
Probabilistic reference system for human brain, including tools to establish this reference system for structural and functional anatomy on both macroscopic (in vivo) and microscopic (post mortem) levels. Project has expanded neuroinformatics tools for data sharing and created Conforming Site System that allows laboratories worldwide to contribute data to evolving atlas. Through implementation of ICBM data sharing policy space, they are fostering data exchange while still providing for scientific credit assignment and subject confidentiality.ICBM atlas collection consists of ICBM Template, tool developed to provide reference that includes both set of coordinates and associated anatomical labels; the ICBM 452 T1 atlas, average of T1-weighted MRIs of normal young adult brains, ICBM probabilistic atlases, and Cytoarchitectonic Atlas. ICBM Subject Database is web-based database infrastructure that simplifies image dataset collection, organization and dissemination. Authorized users may view representations of data and form collections of datasets that can be downloaded or fed directly into Pipeline environment for distributed processing and analysis.
Proper citation: International Consortium for Brain Mapping (RRID:SCR_000445) Copy
Software automated coordinate based system to retrieve brain labels from the 1988 Talairach Atlas. Talairach Daemon database contains anatomical names for brain areas using x-y-z coordinates defined by the 1988 Talairach Atlas.
Proper citation: Talairach Daemon (RRID:SCR_000448) Copy
A pan-European scientific association to encourage research across the neurosciences and to translate new knowledge on fundamental disease mechanisms into new medicines and clinical applications. As an interdisciplinary forum for the science and treatment of disorders of the brain, they promote the communication and cross- fertilization of high-quality experimental and clinical research across the field of neuroscience. ECNP is a non-profit member-based association, independently governed and self-funded. ECNP is a public-interest-serving entity.
Proper citation: ECNP (RRID:SCR_000501) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.