Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.jhu.edu/lschramm/spinalindex.htm
Serial histological sections of rat spinal cord at the lumbar and thoracic levels. Serial sections of rat spinal cord cut in the horizontal and sagittal planes. Also transverse and sagittal section series of the postnatal thoracic spinal cord immunolabeled for SMI-32.
Proper citation: Schramm Lab Spinal Cord Atlases (RRID:SCR_003265) Copy
http://llama.mshri.on.ca/funcassociate/
A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool
Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy
A web-based tool that provides composite interpretations for microarray data comparing two sample groups as well as lists of genes from diverse sources of biological information. It provides multiple gene set analysis methods for microarray inputs as well as enrichment analyses for lists of genes. It screens redundant composite annotations when generating and prioritizing them. It also incorporates union and subtracted sets as well as intersection sets. Users can upload their gene sets (e.g. predicted miRNA targets) to generate and analyze new composite sets.
Proper citation: ADGO (RRID:SCR_006343) Copy
A versatile web-server application for the analysis and visualization of array-CGH data.
Proper citation: waviCGH (RRID:SCR_006662) Copy
Web-based microarray data analysis and visualization system powered by CRC, or Chinese Restaurant cluster, a Dirichlet process model-based clustering algorithm recently developed by Dr. Steve Qin. It also incorporates several gene expression analysis programs from Bioconductor, including GOStats, genefilter, and Heatplus. CRCView also installs from the Bioconductor system 78 annotation libraries of microarray chips for human (31), mouse (24), rat (14), zebrafish (1), chicken (1), Drosophila (3), Arabidopsis (2), Caenorhabditis elegans (1), and Xenopus Laevis (1). CRCView allows flexible input data format, automated model-based CRC clustering analysis, rich graphical illustration, and integrated Gene Ontology (GO)-based gene enrichment for efficient annotation and interpretation of clustering results. CRC has the following features comparing to other clustering tools: 1) able to infer number of clusters, 2) able to cluster genes displaying time-shifted and/or inverted correlations, 3) able to tolerate missing genotype data and 4) provide confidence measure for clusters generated. You need to register for an account in the system to store your data and analyses. The data and results can be visited again anytime you log in.
Proper citation: CRCView (RRID:SCR_007092) Copy
http://www.nitrc.org/projects/dti_rat_atlas/
3D DTI anatomical rat brain atlases have been created by the UNC- Chapel Hill Department of Psychiatry and the CAMID research collaboration. There are three age groups, postnatal day 5, postnatal day 14, and postnatal day 72. The subjects were Sprague-Dawley rats that were controls in a study on cocaine abuse and development. The P5 and P14 templates were made from scans of twenty rats each (ten female, ten male); the P72, from six females. The individual cases have been resampled to isotropic resolution, manually skull-stripped, and deformably registered via an unbiased atlas building method to create a template for each age group. Each template was then manually segmented using itk-SNAP software. Each atlas is made up of 3 files, a template image, a segmentation, and a label file.
Proper citation: 3D DTI Atlas of the Rat Brain In Postnatal Day 5 14 and Adulthood (RRID:SCR_009437) Copy
http://www.nia.nih.gov/research/dab/aged-rodent-tissue-bank-handbook
A repository of tissue collected from the NIA Aged Rodent Colonies under contractual arrangement with BioReliance. The NIA colonies are barrier maintained and Specific Pathogen Free. Tissues are fresh frozen and stored at -80 degrees Celsius. Tissue from the NIA Aged Rodent Tissue Bank is available to investigators at academic and nonprofit research institutions who are engaged in funded research on aging. The project name and source of funding must accompany all orders. It may not be possible to ship tissue to foreign countries that have restrictions on the import of animal tissues or products. Please Note: Incomplete order forms will be returned. We can only offer following week delivery for those orders for which completed order forms are received by the deadline of Tuesday noon, Eastern time. Starting April 1, 2012, a copy (.pdf) of the purchase order must be emailed along with the order form.
Proper citation: Aged Rodent Tissue Bank (RRID:SCR_010607) Copy
Data analysis service that allows to process CEL files from Affymetrix, Inc. GeneChip Gene 1.0 ST Arrays to identify alternative splicing.
Proper citation: Gene Array Analyzer (RRID:SCR_008323) Copy
http://www.nitrc.org/projects/whs-sd-atlas/
Open access volumetric atlas of anatomical delineations of rat brain based on structural contrast in isotropic magnetic resonance and diffusion tensor images acquired ex vivo from 80 day old male Sprague Dawley rat at Duke Center for In Vivo Microscopy. Spatial reference is provided by Waxholm Space coordinate system. Location of bregma and lambda are identified as anchors towards stereotaxic space. Application areas include localization of signal in non structural images. Atlas, MRI and DTI volumes, and diffusion tensor data are shared in NIfTI format.
Proper citation: Waxholm Space Atlas of the Sprague Dawley Rat Brain (RRID:SCR_017124) Copy
http://www.med.umich.edu/tamc/
A service for preparing genetically modified mice and rats for investigators at the University of Michigan. These mice models are typically used to study gene function, gene expression, gene regulation, and for the development of animal models of human disease and gene therapy reagents. TAMC provide access to their micromanipoulation and embryos stem cell workstations along with necessary reagents such as specialized plasmids, embryonic stem (ES) cell lines, FBS, and feeder cells certified for ES cell culture.
Proper citation: Transgenic Animal Model Core (RRID:SCR_000776) Copy
http://brainvis.wustl.edu/wiki/index.php/Caret:Atlases
THIS RESOURCE IS NO LONGER IS SERVICE. Documented on July,29,2022. Surface-based atlases of human, macaque, rat and mouse cerebral and cerebellar cortices derived from structural MRI volumes developed in the Van Essen laboratory can be downloaded by direct links on the SumsDB database and can be viewed using freely available Caret (offline) and WebCaret (online) software. The human and macaque atlases include a large and growing compendium of experimental data pertaining to the structural and functional organization of primate cerebral cortex.
Proper citation: Surface-Based Atlases (RRID:SCR_002099) Copy
http://neuromorpho.org/index.jsp
Centrally curated inventory of digitally reconstructed neurons associated with peer-reviewed publications that contains some of the most complete axonal arborizations digitally available in the community. Each neuron is represented by a unique identifier, general information (metadata), the original and standardized ASCII files of the digital morphological reconstruction, and a set of morphometric features. It contains contributions from over 100 laboratories worldwide and is continuously updated as new morphological reconstructions are collected, published, and shared. Users may browse by species, brain region, cell type or lab name. Users can also download morphological reconstructions for research and analysis. Deposition and distribution of reconstruction files ultimately prevents data loss. Centralized curation and annotation aims at minimizing the effort required by data owners while ensuring a unified format. It also provides a one-stop entry point for all available reconstructions, thus maximizing data visibility and impact.
Proper citation: NeuroMorpho.Org (RRID:SCR_002145) Copy
Supplies biomedical investigators with rat models, embryonic stem cells, related reagents, and protocols they require for their research. In addition to repository, cryostorage and distribution functions, RRRC can facilitate acquisition of rat strains from other international repositories as well as provide consultation and technical training to investigators using rat models.
Proper citation: Rat Resource and Research Center (RRID:SCR_002044) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented June 5, 2017. It has been merged with Cell Image Library. Database for sharing and mining cellular and subcellular high resolution 2D, 3D and 4D data from light and electron microscopy, including correlated imaging that makes unique and valuable datasets available to the scientific community for visualization, reuse and reanalysis. Techniques range from wide field mosaics taken with multiphoton microscopy to 3D reconstructions of cellular ultrastructure using electron tomography. Contributions from the community are welcome. The CCDB was designed around the process of reconstruction from 2D micrographs, capturing key steps in the process from experiment to analysis. The CCDB refers to the set of images taken from microscope the as the Microscopy Product. The microscopy product refers to a set of related 2D images taken by light (epifluorescence, transmitted light, confocal or multiphoton) or electron microscopy (conventional or high voltage transmission electron microscopy). These image sets may comprise a tilt series, optical section series, through focus series, serial sections, mosaics, time series or a set of survey sections taken in a single microscopy session that are not related in any systematic way. A given set of data may be more than one product, for example, it is possible for a set of images to be both a mosaic and a tilt series. The Microscopy Product ID serves as the accession number for the CCDB. All microscopy products must belong to a project and be stored along with key specimen preparation details. Each project receives a unique Project ID that groups together related microscopy products. Many of the datasets come from published literature, but publication is not a prerequisite for inclusion in the CCDB. Any datasets that are of high quality and interest to the scientific community can be included in the CCDB.
Proper citation: Cell Centered Database (RRID:SCR_002168) Copy
http://biodev.extra.cea.fr/interoporc/
Automatic prediction tool to infer protein-protein interaction networks, it is applicable for lots of species using orthology and known interactions. The interoPORC method is based on the interolog concept and combines source interaction datasets from public databases as well as clusters of orthologous proteins (PORC) available on Integr8. Users can use this page to ask InteroPorc for all species present in Integr8. Some results are already computed and users can run InteroPorc to investigate any other species. Currently, the following databases are processed and merged (with datetime of the last available public release for each database used): IntAct, MINT, DIP, and Integr8.
Proper citation: InteroPorc (RRID:SCR_002067) Copy
http://www.broadinstitute.org/rat/public/index_main.html
Data set of pictures representing genetic linkage maps of the rat resulting from the integration of two F2 intercrosses (SHRSP x BN and FHH x ACI). Markers in common between the two crosses are connected by a line to define integration points. There are a total of 4,786 markers on these maps; 4375 WIBR/MIT CGR markers; 223 markers from the previously released Mit/Mgh rat maps and 188 markers from the National Institute of Arthritis and Musculoskeletal and Skin Diseases Arb rat maps. Pictures are drawn to a scale of 5cm (Kosombi) per inch. The changes in color of the backbone of the chromosome for each cross represents the space between any two framework loci. Markers in blue type are framework loci. Markers in green type are unique placement loci. Markers in black type are bouncy placement loci.
Proper citation: Genetic Maps of the Rat Genome (RRID:SCR_002266) Copy
https://www.genevestigator.com/gv/
A high performance search engine for gene expression that integrates thousands of manually curated public microarray and RNAseq experiments and nicely visualizes gene expression across different biological contexts (diseases, drugs, tissues, cancers, genotypes, etc.). There are two basic analysis approaches: # for a gene of interest, identify which conditions affect its expression. # for condition(s) of interest, identify which genes are specifically expressed in this/these conditions. Genevestigator builds on the deep integration of data, both at the level of data normalization and on the level of sample annotations. This deep integration allows scientists to ask new types of questions that cannot be addressed using conventional tools.
Proper citation: Genevestigator (RRID:SCR_002358) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 13, 2026. Computationally oriented experimental laboratory interested in the encoding of auditory information in the cerebral cortex and brainstem, and in the mechanisms of tinnitus and the effect of various drugs (Lidocaine, steroids, anti-oxidants) in relieving noise trauma induced tinnitus. The ferret (Mustela putorius) and the rat serve as their system model. Through chronic implants, they obtain electrophysiological data from awake behaving animals in order to investigate the response properties and functional organization of the auditory system, both in health and after noise trauma that induces tinnitus in rats. Projects: * Response Modulation to Ongoing Broadband Sounds in Primary Auditory Cortex * Neuronal Response Characteristics in the Inferior Colliculus of the Awake Ferret and Rat * Spectro-Temporal Representation of Feature Onsets in Primary Auditory Cortex * Targeting the changes in inferior colliculus induced by tinnitus
Proper citation: Ear Lab (RRID:SCR_002531) Copy
A Python-based open source toolkit for magnetic resonance connectome mapping, data management, sharing, visualization and analysis. The toolkit includes the connectome mapper (a full DMRI processing pipeline), a new file format for multi modal data and metadata, and a visualization application.
Proper citation: Connectome Mapping Toolkit (RRID:SCR_001644) Copy
https://rgd.mcw.edu/rgdweb/portal/home.jsp?p=4
An integrated resource for information on genes, QTLs and strains associated with diabetes. The portal provides easy acces to data related to both Type 1 and Type 2 Diabetes and Diabetes-related Obesity and Hypertension, as well as information on Diabetic Complications. View the results for all the included diabetes-related disease states or choose a disease category to get a pull-down list of diseases. A single click on a disease will provide a list of related genes, QTLs, and strains as well as a genome wide view of these via the GViewer tool. A link from GViewer to GBrowse shows the genes and QTLs within their genomic context. Additional pages for Phenotypes, Pathways and Biological Processes provide one-click access to data related to diabetes. Tools, Related Links and Rat Strain Models pages link to additional resources of interest to diabetes researchers.
Proper citation: Diabetes Disease Portal (RRID:SCR_001660) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.