Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
The mission of ILAR is to evaluate and disseminate information on issues related to the scientific, technological, and ethical use of animals and related biological resources in research, testing, and education. Using the principles of refinement, reduction, and replacement (3Rs) as a foundation, ILAR promotes high-quality science through the humane care and use of animals and the implementation of alternatives. Through the reports of expert committees, the ILAR Journal, web-based resources, and other means of communication, ILAR functions as a component of the National Academies to provide independent, objective advice to the federal government, the international biomedical research community, and the public. ILAR supports the responsible use of animals in research, testing, and education as a key component to advancing the health and quality of life of humans and animals. It promotes high-quality science and humane care and use of research animals based upon the principles of refinement, replacement, and reduction (the 3Rs) and high ethical standards. It fosters best practices that enhance human and animal welfare by organizing and disseminating information and by facilitating dialogue among interested parties. It has developed a unique Search Engine to search for animal models and strains. This search engine surveys all the websites of vendors and repositories of laboratory animals and biological material on our Links page. The ILAR develops guidelines on laboratory animal care and use and conducts conferences, symposia, and workshops on important laboratory animal problems. ILAR publishes the ILAR Journal on a quarterly basis, as well as conference proceedings and special reports prepared by committees of experts. A list of ILAR publications on issues related to laboratory animal research is available on the Web site. As part of the Animal Models and Genetic Stocks Information Exchange Program, ILAR staff members answer direct telephone and mail inquiries and maintain a Web page containing a database on animal models and genetic stock. The Web site also offers a comprehensive search engine that enables users to find information on the existence and location of special animal models, correct nomenclature to identify animals, and related topics such as diseases of animals and relevant publications. Sponsors: ILAR receives funding from the following sponsors: -Abbott Laboratories -Abbott Fund -American College of Laboratory Animal Medicine (ACLAM) -American Society of Laboratory Animal Practitioners (ASLAP) -Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) -Bristol-Myers Squibb Co. -Charles River -Charles River Laboratories Foundation -Covance -Federation of American Societies for Experimental Biology (FASEB) -GlaxoSmithKline -Merck & Co., Inc. -National Science Foundation (NSF) -Pfizer -Scientists Center for Animal Welfare (SCAW) -U.S. Department of Agriculture (USDA) -U.S. Department of the Army -U.S. Department of Health and Human Services (DHHS) :*National Institutes of Health (NIH) :*Office of Research Integrity (ORI) -U.S. Department of the Navy -U.S. Department of Veterans Affairs -Wellcome Trust -Wyeth Pharmaceuticals
Proper citation: Institute for Laboratory Animal Research (RRID:SCR_006872) Copy
http://rarediseases.info.nih.gov/GARD/Default.aspx
Genetic and Rare Diseases Information Center (GARD) is a collaborative effort of two agencies of the National Institutes of Health, The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) to help people find useful information about genetic conditions and rare diseases. GARD provides timely access to experienced information specialists who can furnish current and accurate information about genetic and rare diseases. So far, GARD has responded to 27,635 inquiries on about 7,147 rare and genetic diseases. Requests come not only from patients and their families, but also from physicians, nurses and other health-care professionals. GARD also has proved useful to genetic counselors, occupational and physical therapists, social workers, and teachers who work with people with a genetic or rare disease. Even scientists who are studying a genetic or rare disease and who need information for their research have contacted GARD, as have people who are taking part in a clinical study. Community leaders looking to help people find resources for those with genetic or rare diseases and advocacy groups who want up-to-date disease information for their members have contacted GARD. And members of the media who are writing stories about genetic or rare diseases have found the information GARD has on hand useful, accurate and complete. GARD has information on: :- What is known about a genetic or rare disease. :- What research studies are being conducted. :- What genetic testing and genetic services are available. :- Which advocacy groups to contact for a specific genetic or rare disease. :- What has been written recently about a genetic or rare disease in medical journals. GARD information specialists get their information from: :- NIH resources. :- Medical textbooks. :- Journal articles. :- Web sites. :- Advocacy groups, and their literature and services. :- Medical databases.
Proper citation: Genetic and Rare Diseases Information Center (RRID:SCR_008695) Copy
http://www.roslin.ed.ac.uk/alan-archibald/porcine-genome-sequencing-project/
Map of identifyied genes controlling traits of economic and welfare significance in the pig. The project objectives were to produce a genetic map with markers spaced at approximately 20 centiMorgan intervals over at least 90% of the pig genome; to produce a physical map with at least one distal and one proximal landmark locus mapped on each porcine chromosome arm and also genetically mapped; to develop a flow karyotype for the pig based on FACS sorted chromosomes; to develop PCR based techniques to enable rapid genotyping for polymorphic markers; to evaluate synteny conservation between pigs, man, mice and cattle; to develop and evaluate the statistical techniques required to analyze data from QTL mapping experiments and to plan and initiate the mapping of QTLs in the pig; to map loci affecting traits of economic and biological significance in the pig; and to develop the molecular tools to allow the future identification and cloning of mapped loci. Animal breeders currently assume that economically important traits such as growth, carcass composition and reproductive performance are controlled by an infinite number of genes each of infinitessimal effect. Although this model is known to be unrealistic, it has successfully underpinned the genetic improvement of livestock, including pigs, over recent decades. A map of the pig genome would allow the development of more realistic models of the genetic control of economic traits and the ultimately the identification of the major trait genes. This would allow the development of more efficient marker assisted selection which may be of particular value for traits such as disease resistance and meat quality.
Proper citation: Pig Genome Mapping (RRID:SCR_012884) Copy
https://www.amazon.com/How-Brain-Works-Mark-Dubin/dp/0632044411
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Is the Brain (Like) a Computer is an e-book written by Prof. Mark Dubin. It consists of the following: Introduction. Why do we consider the relationship of brains and computers and what does this have to do with consciousness? What's a Brain Made Of? A thought experiment. Test Drive a Turing Machine. A theoretical approach. Interim Summary. Many of the main pages have links to additional information. When you click on one of those links a NEW page will open ON TOP of the page you are clicking from. This convention is adopted so that you can look at the additional information and then easily return to the main page you got there from.
Proper citation: Is the Brain (Like) a Computer (RRID:SCR_008809) Copy
https://chordate.bpni.bio.keio.ac.jp/chordate/faba/1.4/top.html
Image resource including ascidian's three-dimensional (3D) and cross-sectional images through the developmental time course. These images were reconstructed from more than 3,000 high-resolution real images collected by confocal laser scanning microscopy (CLSM) at newly defined 26 distinct developmental stages (stages 1-26) from fertilized egg to hatching larva, which were grouped into six periods named the zygote, cleavage, gastrula, neurula, tailbud, and larva periods. The data set will be helpful in standardizing developmental stages for morphology comparison as well as for providing guidelines for several functional studies of a body plan in chordate.
Proper citation: Four-dimensional Ascidian Body Atlas (RRID:SCR_001691) Copy
The National Science Foundation's Graduate Research Fellowship Program (GRFP) helps ensure the vitality of the human resource base of science and engineering in the United States and reinforces its diversity. The program recognizes and supports outstanding graduate students in NSF-supported science, technology, engineering, and mathematics disciplines who are pursuing research-based master's and doctoral degrees in the U.S. and abroad. The NSF welcomes applications from all qualified students and strongly encourages under-represented populations, including women, under-represented racial and ethnic minorities, and persons with disabilities, to apply for this fellowship. Fellows share in the prestige and opportunities that become available when they are selected. Fellows benefit from a three-year annual stipend of $30,000 along with a $10,500 cost of education allowance for tuition and fees, a one-time $1,000 international travel allowance and the freedom to conduct their own research at any accredited U.S., or foreign institution of graduate education they choose. NSF Fellows are anticipated to become knowledge experts who can contribute significantly to research, teaching, and innovations in science and engineering. So that the nation can build fully upon the strength and creativity of a diverse society, the Foundation welcomes applications from all qualified individuals. Women, under-represented minorites and people with disabilities are encouraged to apply. Those with disabilities are additionally accommodated by the Foundation to provide for the most successful graduate experience possible. Sponsors: This program is supported by the National Science Foundation (NSF).
Proper citation: National Science Foundation Graduate Research Fellowship Program (RRID:SCR_001487) Copy
http://www.nimhans.kar.nic.in/neuropathology/neuropath2.htm#brainbank
A National Facility to promote research in Neurobiology using human nervous tissues. The brain tissues collected with informed consent of close relatives within 4-24 hours following death are frozen for Biochemical, Immuno-histochemical and Molecular Biological studies. A large number of formalin fixed brain tissues from various Neurological, Neurosurgical and Psychiatric disorders are also available for study.
Proper citation: Bangalore Brain Bank (RRID:SCR_004227) Copy
http://www.bionet.umn.edu/tpf/home.html
Procure and distribute human tissue and other biological samples in support of basic, translational, and clinical cancer research at the University of Minnesota. The TPF is a centralized resource with standardized patient consent, sample collection, processing, storage, quality control, distribution, and electronic record maintenance. Since the 1996 inception of the TPF, over 61,000 tissue samples including well-preserved samples of malignant and benign tumors, organ-matched normal tissue, and other types of diseased tissues, have been collected from surgical specimens obtained at the University of Minnesota Medical Center-Fairview (UMMC-F) University Campus. Surgical pathologists are intellectually engaged in TPF functions, providing researchers with specimen-oriented medical consultation to facilitate research productivity. Prior to surgery, TPF personnel identify and consent patients for procurement of tissue, blood, urine, saliva, and ascites fluid. Within the integrated working environment of the surgical pathology laboratory, freshly obtained tissues not needed for diagnosis are selected and provided by pathologists to TPF personnel. Tissue samples are then assigned an independent code and processed. TPF staff can also work with researchers to individualize the procurement of tissues to fit specific research needs.
Proper citation: University of Minnesota Tissue Procurement Facility (RRID:SCR_004270) Copy
http://www.tbi-impact.org/?p=impact%2Fcalc&btn_calc=GO+TO+CALCULATOR
A calculator that calculates the prediction models for 6 month outcome after Traumatic Brain Injury. Based on extensive prognostic analysis the IMPACT investigators have developed prognostic models for predicting 6 month outcome in adult patients with moderate to severe head injury (Glasgow Coma Scale <=12) on admission. By entering the characteristics into the calculator, the models will provide an estimate of the expected outcome at 6 months. We present three models of increasing complexity (Core, Core + CT, Core + CT + Lab). These models were developed and validated in collaboration with the CRASH trial collaborators on large numbers of individual patient data (the IMPACT database). The models discriminate well, and are particularly suited for purposes of classification and characterization of large cohorts of patients. Extreme caution is required when applying the estimated prognosis to individual patients. The sequential prediction models may be used as an aid to estimate 6 month outcome in patients with severe or moderate traumatic brain injury (TBI). However, the prediction rule can only complement, never replace, clinical judgment and can therefore be used only as a decision-support system.
Proper citation: IMPACT Prognostic Calculator (RRID:SCR_004730) Copy
http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/JHUtemplate_newuser.html
DTI white matter atlases with different data sources and different image processing. These include single-subject, group-averaged, B0 correction, processed atlases (White Matter Parcellation Map, Tract-probability maps, Conceptual difference between the WMPM and tract-probability maps), and linear or non-linear transformation for automated white matter segmentation. # Adam single-subject white matter atlas (old version): These are electronic versions of atlases published in Wakana et al, Radiology, 230, 77-87 (2004) and MRI Atlas of Human White Matter, Elsevier. ## Original Adam Atlas: 256 x 256 x 55 (FOV = 246 x 246 mm / 2.2 mm slices) (The original matrix is 96x96x55 (2.2 mm isotropic) which is zerofilled to 256 x 256 ## Re-sliced Adam Atlas: 246 x 246 x 121 (1 mm isotropic) ## Talairach Adam: 246 x 246 x 121 (1 mm isotropic) # New Eve single-subject white matter atlas: The new version of the single-subject white matter atlas with comprehensive white matter parcellation. ## MNI coordinate: 181 x 217 x 181 (1 mm isotropic) ## Talairach coordinate: 181 x 217 x 181 (1 mm isotropic) # Group-averaged atlases: This atlas was created from their normal DTI database (n = 28). The template was MNI-ICBM-152 and the data from the normal subjects were normalized by affine transformation. Image dimensions are 181x217x181, 1 mm isotropic. There are two types of maps. The first one is the averaged tensor map and the second one is probabilistic maps of 11 white matter tracts reconstructed by FACT. # ICBM Group-averaged atlases: This atlas was created from ICBM database. All templates follow Radiology convention. You may need to flip right and left when you use image registration software that follows the Neurology convention.
Proper citation: DTI White Matter Atlas (RRID:SCR_005279) Copy
https://github.com/dorianps/LESYMAP
Software R package to conduct lesion-to-symptom mapping from human MRI data.Takes lesion maps and cognitive performance scores from patients with stroke, and maps brain areas responsible for cognitive deficit.
Proper citation: LESYMAP (RRID:SCR_017967) Copy
Biomedical technology resource center specializing in novel approaches and tools for neuroimaging. It develops novel strategies to investigate brain structure and function in their full multidimensional complexity. There is a rapidly growing need for brain models comprehensive enough to represent brain structure and function as they change across time in large populations, in different disease states, across imaging modalities, across age and sex, and even across species. International networks of collaborators are provided with a diverse array of tools to create, analyze, visualize, and interact with models of the brain. A major focus of these collaborations is to develop four-dimensional brain models that track and analyze complex patterns of dynamically changing brain structure in development and disease, expanding investigations of brain structure-function relations to four dimensions.
Proper citation: Laboratory of Neuro Imaging (RRID:SCR_001922) Copy
http://www.informatics.jax.org/phenotypes.shtml
Enables comparative phenotype analysis, searches for human disease models, and hypothesis generation by providing access to spontaneous, induced, and genetically engineered mutations and their strain-specific phenotypes.
Proper citation: Phenotypes and Mutant Alleles (RRID:SCR_017523) Copy
Manually curated database offering variability and pathogenicity information about mtDNA variants. Human mitochondrial variants data of healthy and diseased subjects.Data and text mining pipeline to annotate human mitochondrial variants with functional and clinical information.
Proper citation: HmtVar (RRID:SCR_017288) Copy
http://www.humphreyslab.com/SingleCell/
Software tool as analyzer for kidney single cell datasets. Allows users to query gene expression from mouse or human kidney and human kidney organoid single cell datasets. For details about datasets visit ReBuilding a Kidney website.
Proper citation: Kidney Interactive Transcriptomics (RRID:SCR_017209) Copy
https://gitlab.com/rosen-lab/white-adipose-atlas
Single cell atlas of human and mouse white adipose tissue.
Proper citation: White Adipose Atlas (RRID:SCR_023625) Copy
https://www.vet.k-state.edu/research/docs/BRITE-application.pdf
The BRITE Veterinary Student Program provides DVM students interested in research with a subsidized, in-depth mentored research experience. The opportunity can be used to gain research experience, to obtain an MS, or to jump-start a DVM/PhD program. The BRITE veterinary student program is designed to expose DVM students to hypothesis-driven research activities, methodologies involved in design and execution of laboratory experiments and ethical issues pertinent to biomedical research, at a formative stage of their veterinary education. BRITE veterinary students are given a unique opportunity to utilize the rigorous didactic basic science training obtained during the first two years of the professional curriculum in pursuit of a research problem relevant to human and animal health. Sponsors: The program is funded by Kansas State University.
Proper citation: Basic Research Immersion Training Experience Veterinary Student Program (RRID:SCR_008305) Copy
http://www.vetmed.wisc.edu/ms-phd/
The Comparative Biomedical Sciences Graduate Degree program provides exceptional graduate research training in core areas of animal and human health including genomics, immunology, molecular and cellular biology, physiology, infectious disease, neuroscience, pharmacology and toxicology, and oncology. Seventy-five faculty members in a diverse number of UW departments including Bacteriology, Biochemistry, Medical Microbiology and Immunology, Medicine, Oncology, Pathology, Radiology in addition to the 4 departments of the School of Veterinary Medicine are trainers in the program. These internationally recognized professors, as well as the integrative nature of our program, provide outstanding and unique research opportunities for our students. Because the University of Wisconsin is consistently ranked as one of the best 10 graduate institutions in the nation, the strength of our program is not only due to the superb research and teaching of our faculty but also due to the University as a whole. Approximately 55 students, most of whom are Ph.D. candidates, are currently enrolled in the program. Research strategies and academic curricula are tailored to the specific needs of each individual student. Graduates from our program are highly successful in the biotechnology industry and at top-ranked research institutions in the U.S. and abroad. The Comparative Biomedical Sciences Graduate Program offers a diverse number of research opportunities in multiple fields of study. A brief description of some of the major areas of research being performed by faculty affiliated with the Comparative Biomedical Sciences Graduate Program is provided below. Use the pull down menu above or click on the heading to find faculty members doing research in these areas. Sponsors: CBMS is supported by the University of Wisconsin
Proper citation: Comparative Biomedical Sciences Graduate Program (RRID:SCR_008304) Copy
Site for collection and distribution of clinical data related to genetic analysis of drug abuse phenotypes. Anonymous data on family structure, age, sex, clinical status, and diagnosis, DNA samples and cell line cultures, and data derived from genotyping and other genetic analyses of these clinical data and biomaterials, are distributed to qualified researchers studying genetics of mental disorders and other complex diseases at recognized biomedical research facilities. Phenotypic and Genetic data will be made available to general public on release dates through distribution mechanisms specified on website.
Proper citation: National Institute on Drug Abuse Center for Genetic Studies (RRID:SCR_013061) Copy
http://ccg.vital-it.ch/snp2tfbs
Collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. Used to investigate the molecular mechanisms underlying regulatory variation in the human genome. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs.
Proper citation: SNP2TFBS (RRID:SCR_016885) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.