Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 7 showing 121 ~ 140 out of 686 results
Snippet view Table view Download 686 Result(s)
Click the to add this resource to a Collection

https://www.aplysia.earth.miami.edu/

Center where Aplysia californica are cultured and raised for research purposes. Aplysia from the facility serve in research on genomics, human brain function, toxicology for developmental studies, natural products, chemistry for isolation of novel anti-tumor and antibacterial compounds, in the study of transport by digestive tissues and have potential for use in studies of substance addiction and nerve senescence and regeneration.

Proper citation: National Resource for Aplysia (RRID:SCR_008361) Copy   


https://www.amazon.com/How-Brain-Works-Mark-Dubin/dp/0632044411

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Is the Brain (Like) a Computer is an e-book written by Prof. Mark Dubin. It consists of the following: Introduction. Why do we consider the relationship of brains and computers and what does this have to do with consciousness? What's a Brain Made Of? A thought experiment. Test Drive a Turing Machine. A theoretical approach. Interim Summary. Many of the main pages have links to additional information. When you click on one of those links a NEW page will open ON TOP of the page you are clicking from. This convention is adopted so that you can look at the additional information and then easily return to the main page you got there from.

Proper citation: Is the Brain (Like) a Computer (RRID:SCR_008809) Copy   


http://healthybrain.umn.edu/

Research forum portal to address brain status by acquiring comprehensive, multimodal data from healthy humans across the lifespan to characterize brain status, assess its change over time, and associate composite descriptors of brain status. Specifically, the measurements are acquired noninvasively by existing neuroimaging technologies (structural MRI, functional MRI, magnetic resonance spectroscopy, diffusion MRI, and magnetoencephalography); in addition, genetic, cognitive, language, and lifestyle data are acquired. Goals: * Derive the Brain Health Index- An integrative assessment of brain status derived from multimodal measurements of brain structure, function, and chemistry. * Continue acquiring data to construct the first-ever databank on brain, cognitive, language and genetic measurements for healthy people across the lifespan. * Provide a novel and unique dataset by which to: characterize brain status, assess its change over time, and associate it with genetic makeup, cognitive function, and language abilities. * Forecast future brain health and disease based on current measurements and guide physicians towards new interventions and evaluate interventions as they develop. * Extend to siblings and other family members to further assess the genetic influences and inheritability.

Proper citation: HBP: Healthy Brain Project (RRID:SCR_013137) Copy   


  • RRID:SCR_016414

    This resource has 10+ mentions.

https://github.com/NOCIONS/letswave6/wiki/Download-and-setup

Open source electroencephalogram (EEG) signal processing toolbox to process and visualise EEG/MEG data and other neurophysiological signals.

Proper citation: Letswave (RRID:SCR_016414) Copy   


http://ki.se/ki/jsp/polopoly.jsp?d=29350&a=36311&l=en

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 29, 2016. Study to investigate symptoms of Attention Deficit Hyperactivity Disorder (ADHD) according to DSM-IV in adults with special focus on attention deficit. Information is used from the Swedish Twin study of Adults: genes and Environment (STAGE) from the Swedish Twin Registry. ADHD-discordant and concordant samples of pairs of twins for ADHD are selected from STAGE for studies of brain structure and function with Functional Magnetic Resonance Imaging (fMRI).

Proper citation: KI Biobank STAGE-ADHD (RRID:SCR_005921) Copy   


http://www.alz.washington.edu/

A clinical research, neuropathological research and collaborative research database that uses data collected from 29 NIA-funded Alzheimer's Disease Centers (ADCs). The database consists of several datasets, and searches may be done on the entire database or on individual datasets. Any researcher, whether affiliated with an ADC or not, may request a data file for analysis or aggregate data tables. Requested aggregate data tables are produced and returned as soon as the queue allows (usually within 1-3 days depending on the complexity).

Proper citation: National Alzheimer's Coordinating Center (RRID:SCR_007327) Copy   


http://www.thomaskoenig.ch/Lester/ibaspm.htm

The aim of this work is to present a toolbox for structure segmentation of structural MRI images. All programs were developed in MATLAB based on a widely used fMRI, MRI software package, SPM99, SPM2, SPM5 (Wellcome Department of Cognitive Neurology, London, UK). Other previous works have developed a similar strategy for obtaining the segmentation of individual MRI image into different anatomical structures using a standardized Atlas. Have to be mentioned the one introduced by Montreal Neurological Institute (MNI) that merges the information coming from ANIMAL (algorithm that deforms one image (nonlinear registration) to match previously labelled) and INSECT (Cerebral Tissue Classification) programs for obtaining a suitable gross cortical structure segmentation (Collins et al, 1999). Here both, nonlinear registration and gray matter segmentation processes have been performed through SPM99, SPM2, SPM5 subroutines. Three principal elements for the labeling process are used: gray matter segmentation, normalization transform matrix (that maps voxels from individual space to standardized one) and MaxPro MNI Atlas. All three are combined to yield a good performance in segmenting gross cortical structures. The programs here can be used in general for any standardized Atlas and any MRI image modality. System Requirements: 1. The IBASPM graphical user interface (GUI) runs only under MATLAB 7.0 or higher. The non-graphical version runs under MATLAB 6.5 or higher. 2. Statistical Parametrical Mapping Software SPM2, SPM5 Main Functions: * Atlasing: Main function ( This file contains spm_select script from SPM5 toolbox and uigetdir script from MATLAB 7.0 ). * Auto_Labeling : Computes individual atlas. * Create_SPAMs : Constructs Statistical Probability Anatomy Maps (SPAMs). * Create_MaxProb : Creates Maximum Probability Atlas (MaxPro) using the SPAMs previously computed. * All_Brain_Vol : Computes whole brain volume masking the brain using the segmentation files (if the segmentation files does not exist it segments). * Struct_Vol : Computes the volume for different structures based on individual Atlas previously obtained by the atlasing process. * Vols_Stats : Computes mean and standard deviation for each structure in a group of individual atlases.

Proper citation: IBASPM: Individual Brain Atlases using Statistical Parametric Mapping Software (RRID:SCR_007110) Copy   


  • RRID:SCR_006034

    This resource has 1+ mentions.

http://ki.se/imm/cefalo-studien

Saliva taken from participants in a study investigating the association between environmental exposures and brain tumors in children aged 7-19 years and the interaction between these risk factors and genetic polymorphisms, which may confer susceptibility to effects of exogenous agents. Sample types: * Saliva Number of sample donors: 886 (sample collection completed)

Proper citation: KI Biobank - CEFALO (RRID:SCR_006034) Copy   


  • RRID:SCR_010230

    This resource has 10+ mentions.

http://brainhealthregistry.org/

A website aimed at recruiting and assessing subjects for all types of neuroscience studies with the internet. The hope is to accelerate various types of observational studies and clinical trials, and also reduce costs. They are interested in having people, including healthy subjects of all ages, join the registry. Joining only takes a few minutes. The web-based project is designed to speed up cures for Alzheimer's, Parkinson's and other brain disorders. It uses online questionnaires and online neuropsychological tests (which are very much like online brain games).

Proper citation: Brain Health Registry (RRID:SCR_010230) Copy   


http://www.cnbc.cmu.edu/

CNBC is joint venture of University of Pittsburgh and Carnegie Mellon University. Our center leverages the strengths of the University of Pittsburgh in basic and clinical neuroscience and those of Carnegie Mellon in cognitive and computational neuroscience to support a coordinated cross-university research and educational program of international stature. In addition to our Ph.D. program in Neural Computation, we sponsor a graduate certificate program in cooperation with a wide variety of affiliated Ph.D. programs.

Proper citation: Center for the Neural Basis of Cognition (RRID:SCR_002301) Copy   


  • RRID:SCR_002372

    This resource has 500+ mentions.

http://rfmri.org/DPARSF

A MATLAB toolbox forpipeline data analysis of resting-state fMRI that is based on Statistical Parametric Mapping (SPM) and a plug-in software within DPABI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), fractional ALFF, degree centrality, voxel-mirrored homotopic connectivity (VMHC) results. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest. DPARSF basic edition is very easy to use while DPARSF advanced edition (alias: DPARSFA) is much more flexible and powerful. DPARSFA can parallel the computation for each subject, and can be used to reorient images interactively or define regions of interest interactively. Users can skip or combine the processing steps in DPARSF advanced edition freely.

Proper citation: DPARSF (RRID:SCR_002372) Copy   


http://aimlab.cs.uoregon.edu/NEMO/web/

THIS RESOURCE IS NO LONGER IN SERVICE. NIH tombstone webpage lists Project Period : 2009 - 2013. NIH funded project to create EEG and MEG ontologies and ontology based tools. These resources will be used to support representation, classification, and meta-analysis of brain electromagnetic data. Three pillars of NEMO are: DATA, ONTOLOGY, and DATABASE. NEMO data consist of raw EEG, averaged EEG (ERPs), and ERP data analysis results. NEMO ontologies include concepts related to ERP data (including spatial and temporal features of ERP patterns), data provenance, and cognitive and linguistic paradigms that were used to collect data. NEMO database portal is large repository that stores NEMO consortium data, data analysis results, and data provenance. EEG and MEG ontologies and ontology-based tools to support representation, classification, and meta-analysis of brain electromagnetic data. Raw EEG and ERP data may be uploaded to the NEMO FTP site., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Neural ElectroMagnetic Ontologies (NEMO) Project (RRID:SCR_002001) Copy   


  • RRID:SCR_002786

http://www.genepaint.org/MapE15_5_01.htm

Abbreviated reference atlas for the Embryonic 15.5 post conception day mouse. All sections were nissl stained and digitized. To assist in the initial identification of sites of gene expression sites, maps of brains are available for E15.5, P7 and the adult. These maps depict the boundaries of major brain regions (cortex, thalamus, striatum, globus pallidus, ventral striatum, septum, basal forebrain, hippocampus, midbrain, pons, medulla, cerebellum) and also show the more prominent nerve tracts. Maps are most efficiently used by placing the window depicting the map of interest next to the gene expression image. Browsing between planes of sectioning is permitted thus allowing the most appropriate plane to be selected. The annotation of anatomical details such as brain nuclei is currently beyond the scope of the GenePaint database. Hence, such information on the anatomy of the brain and embryo should be obtained from published atlases of mouse anatomy (Kaufman, 1995; Paxinos and Franklin, 2001; Jacobowitz and Abbott, 1997; Schambra et al., 1992; Valverde1998).

Proper citation: GenePaint E15 Atlas (RRID:SCR_002786) Copy   


  • RRID:SCR_002438

    This resource has 100+ mentions.

http://mindboggle.info

Mindboggle (http://mindboggle.info) is open source software for analyzing the shapes of brain structures from human MRI data. The following publication in PLoS Computational Biology documents and evaluates the software: Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of human brains. PLoS Computational Biology 13(3): e1005350. doi:10.1371/journal.pcbi.1005350

Proper citation: Mindboggle (RRID:SCR_002438) Copy   


http://www.nitrc.org/projects/sri24/

An MRI-based atlas of normal adult human brain anatomy, generated by template-free nonrigid registration from images of 24 normal control subjects. The atlas comprises T1, T2, and PD weighted structural MRI, tissue probability maps (GM, WM, CSF), maximum-likelihood tissue segmentation, DTI-based measures (FA, MD, longitudinal and transversal diffusivity), and two labels maps of cortical regions and subcortical structures. The atlas is provided at 1mm isotropic image resolution in Analyze, NIFTI, and Nrrd format. We are also providing an experimental packaging for use with SPM8.

Proper citation: SRI24 Atlas: Normal Adult Brain Anatomy (RRID:SCR_002551) Copy   


  • RRID:SCR_003086

    This resource has 1000+ mentions.

http://neuromab.ucdavis.edu/

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

Proper citation: NeuroMab (RRID:SCR_003086) Copy   


  • RRID:SCR_002787

http://www.genepaint.org/MapP7_01.htm

Abbreviated reference atlas for the P56 mouse. All sections were nissl stained and digitized. To assist in the initial identification of sites of gene expression sites, maps of brains are available for E15.5, P7 and the adult. These maps depict the boundaries of major brain regions (cortex, thalamus, striatum, globus pallidus, ventral striatum, septum, basal forebrain, hippocampus, midbrain, pons, medulla, cerebellum) and also show the more prominent nerve tracts. Maps are most efficiently used by placing the window depicting the map of interest next to the gene expression image. Browsing between planes of sectioning is permitted thus allowing the most appropriate plane to be selected. The annotation of anatomical details such as brain nuclei is currently beyond the scope of the GenePaint database. Hence, such information on the anatomy of the brain and embryo should be obtained from published atlases of mouse anatomy (Kaufman, 1995; Paxinos and Franklin, 2001; Jacobowitz and Abbott, 1997; Schambra et al., 1992; Valverde1998).

Proper citation: GenePaint P7 Atlas (RRID:SCR_002787) Copy   


http://sleep.alleninstitute.org

Collection of gene expression data in mouse brain for five different conditions of sleep and wakefulness to understand sleep deprivation and dynamic changes underlying sleep and wake cycles. Platform to generate cellular resolution expression data.

Proper citation: Allen Institute for Brain Science Sleep Study (RRID:SCR_002983) Copy   


  • RRID:SCR_004229

    This resource has 10+ mentions.

http://www.virtualflybrain.org

An interactive tool for neurobiologists to explore the detailed neuroanatomy, neuron connectivity and gene expression of the adult Drosophila melanogaster brain.

Proper citation: Virtual Fly Brain (RRID:SCR_004229) Copy   


  • RRID:SCR_002606

    This resource has 1+ mentions.

http://www.nitrc.org/projects/unc_brain_atlas

Human brain atlases for adult, pediatric and elderly populations, by iterative joint deformable registration of training datasets into a single unbiased average image. Atlases packages include T1-weighted images, tissue priors (WM,GM,CSF), lobar parcellation maps and subcortical structures. Current available atlases: * Adult atlas: Symmetric atlas generated from 50+ healthy adult subjects (20-59 year old). * UNC-MNI Pediatric 1-year-old atlas: Symmetric atlas generated from 104 1-year-old subjects, combining children at high familial risk of autism and controls. * Pediatric 4-year-old atlas: Symmetric atlas generated from 10 4-year-old healthy subjects. * Elderly atlas: Atlas generated from 27 healthy elderly subjects (60+ years old). Additional information and acknowledgment for their usage can be found by clicking on the release notes.

Proper citation: UNC Human Brain Atlas (RRID:SCR_002606) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SPARC Anatomical Working Group Resources

    Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within SPARC SAWG that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X