Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 7 showing 121 ~ 140 out of 686 results
Snippet view Table view Download 686 Result(s)
Click the to add this resource to a Collection

http://millette.med.sc.edu/Lab%209%2610/histology_of_nervous_tissue.htm

A website for a neuroscience lab class from the University of South Carolina that contains images of different parts of the nervous system and allows students to identify each part and answer questions about it. You should be able to (a) recognize nervous tissue in routine histological sections; (b) distinguish peripheral nerves from dense CT and smooth muscle; (c) recognize the morphological differences between myelinated and unmyelinated nerves at both the light microscopic and electron microscopic levels; (d) recognize nerve cell bodies and their component parts; (e) identify and differentiate dendrites and axons; (f) understand and identify various types of neuroglia, including Schwann cells; (g) understand and identify the structural relationship of the Schwann cell cytoplasm and plasma membrane enveloping axons; (h) understand the general features of nerve synapses. You should be able to draw nerves, cell bodies, Nodes of Ranvier, synapses etc. as they would appear under both the electron and light microscopes.

Proper citation: Histology of Nervous Tissue Laboratory Course (RRID:SCR_002367) Copy   


  • RRID:SCR_002470

    This resource has 10+ mentions.

http://www.med.unc.edu/bric/ideagroup/free-softwares/libra-longitudinal-infant-brain-processing-package

A toolbox with graphical user interfaces for processing infant brain MR images. Longitudinal (or single-time-point) multimodality (including T1, T2, and FA) (or single-modality) data can be processed using the toolbox. Main functions of the software (step by step) include image preprocessing, brain extraction, tissue segmentation and brain labeling. Linux operating system (64 bit) is required. A workstation or server with memory >8G is recommended for processing many images simutaneously. The graphical user interfaces and overall framework of the software are implemented in MATLAB. The image processing functions are implemented with the combination of C/C++, MATLAB, Perl and Shell languages. Parallelization technologies are used in the software to speed up image processing.

Proper citation: iBEAT (RRID:SCR_002470) Copy   


http://learn.genetics.utah.edu/content/addiction/

A physiologic and molecular look at drug addiction involving many factors including: basic neurobiology, a scientific examination of drug action in the brain, the role of genetics in addiction, and ethical considerations. Designed to be used by students, teachers and members of the public, the materials meet selected US education standards for science and health. Drug addiction is a chronic disease characterized by changes in the brain which result in a compulsive desire to use a drug. A combination of many factors including genetics, environment and behavior influence a person's addiction risk, making it an incredibly complicated disease. The new science of addiction considers all of these factors - from biology to family - to unravel the complexities of the addicted brain. * Natural Reward Pathways Exist in the Brain: The reward pathway is responsible for driving our feelings of motivation, reward and behavior. * Drugs Alter the Brain's Reward Pathway: Drugs work over time to change the reward pathway and affect the entire brain, resulting in addiction. * Genetics Is An Important Factor In Addiction: Genetic susceptibility to addiction is the result of the interaction of many genes. * Timing and Circumstances Influence Addiction: If you use drugs when you are an adolescent, you are more likely to develop lifetime addiction. An individual's social environment also influences addiction risk. * Challenges and Issues in Addiction: Addiction impacts society with many ethical, legal and social issues.

Proper citation: New Science of Addiction: Genetics and the Brain (RRID:SCR_002770) Copy   


http://www.cnl.salk.edu/

The long range goal of this laboratory is to understand the computational resources of brains from the biophysical to the systems levels. The central issues being addressed are how dendrites integrate synaptic signals in neurons, how networks of neurons generate dynamical patterns of activity, how sensory information is represented in the cerebral cortex, how memory representations are formed and consolidated during sleep, and how visuo-motor transformations are adaptively organized. Additionally, new techniques have been developed for modeling cell signaling using Monte Carlo methods (MCell) and the blind separation of brain imaging data into functionally independent components (ICA).

Proper citation: Computational Neurobiology Laboratory at the Salk Institute (RRID:SCR_002809) Copy   


http://www.cnsforum.com/educationalresources/imagebank/

A collection of downloadable central nervous system (CNS) images for teaching, presentations, articles, and other purposes. The following major categories of images are as follows: Brain anatomy, Brain physiology, Anxiety, Depression, Schizophrenia, Dementia, Parkinson's disease, Stroke, and Others.

Proper citation: CNSforum: Image Bank (RRID:SCR_002718) Copy   


  • RRID:SCR_002727

    This resource has 10+ mentions.

http://www.rbwb.org/

The Rodent Brain WorkBench is the portal to atlases, databases and tools developed by the Neural Systems and Graphics Computing Laboratory (NeSys) at the Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo, Oslo, Norway. The Rodent Brain WorkBench presents a collection of brain mapping and atlasing oriented database applications and tools. The main category of available data is high resolution mosaic images covering complete histological sections through the rat and mouse brain. A highly structured relational database system for archiving, retrieving, viewing, and analysing microscopy and imaging data, aiming at presentation in standardized brain atlas space, is used to present a series of web applications for individual research projects. * Brain Connectivity * Atlases of Mouse Brain Promoter Gene Expression * General Brain Atlas and Navigation Systems * Downloadable tools for 3-DVisualization Open Access: * Atlas 3D * Cerebro-Cerebellar I * Cerebro-Cerebellar II * Neurotransporter Atlas * Rat Hippocampus * Tet-Off Atlas I (PrP) * Tet-Off Atlas II (PrP/CamKII) * Whole Brain Connectivity Atlas The data presented have been produced in collaboration with a large number of laboratories in Europe and the United States.

Proper citation: Rodent Brain WorkBench (RRID:SCR_002727) Copy   


  • RRID:SCR_002759

    This resource has 10+ mentions.

http://sumsdb.wustl.edu/sums/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on May 11, 2016. Repository of brain-mapping data (surfaces and volumes; structural and functional data) derived from studies including fMRI and MRI from many laboratories, providing convenient access to a growing body of neuroimaging and related data. WebCaret is an online visualization tool for viewing SumsDB datasets. SumsDB includes: * data on cerebral cortex and cerebellar cortex * individual subject data and population data mapped to atlases * data from FreeSurfer and other brainmapping software besides Caret SumsDB provides multiple levels of data access and security: * Free (public) access (e.g., for data associated with published studies) * Data access restricted to collaborators in different laboratories * Owner-only access for work in progress Data can be downloaded from SumsDB as individual files or as bundles archived for offline visualization and analysis in Caret WebCaret provides online Caret-style visualization while circumventing software and data downloads. It is a server-side application running on a linux cluster at Washington University. WebCaret "scenes" facilitate rapid visualization of complex combinations of data Bi-directional links between online publications and WebCaret/SumsDB provide: * Links from figures in online journal article to corresponding scenes in WebCaret * Links from metadata in WebCaret directly to relevant online publications and figures

Proper citation: SumsDB (RRID:SCR_002759) Copy   


http://sncid.stanleyresearch.org/

A database of 1749 neuropathological markers measured in 12 different brain regions from 60 brains in the Consortium Collection from the Stanley Medical Research Institute combined with microarray data and statistical tools. Fifteen brains each are from patients diagnosed with schizophrenia, bipolar disorder, or major depression, and unaffected controls. The four groups are matched by age, sex, race, postmortem interval, pH, side of brain, and mRNA quality. A Repository of raw data is also included. Users must register for access.

Proper citation: Stanley Neuropathology Consortium Integrative Database (RRID:SCR_002749) Copy   


  • RRID:SCR_003112

    This resource has 10+ mentions.

http://studyforrest.org

An MRI data repository that holds a set of 7 Tesla images and behavioral metadata. Multi-faceted brain image archive with behavioral measurements. For each participant a number of different scans and auxiliary recordings have been obtained. In addition, several types of minimally preprocessed data are also provided. The full description of the data release is available in a dedicated publication. This project invites anyone to participate in a decentralized effort to explore the opportunities of open science in neuroimaging by documenting how much (scientific) value can be generated out of a single data release by publication of scientific findings derived from a dataset, algorithms and methods evaluated on this dataset, and/or extensions of this dataset by acquisition and integration of new data.

Proper citation: studyforrest.org (RRID:SCR_003112) Copy   


  • RRID:SCR_003075

    This resource has 10+ mentions.

http://www.fly-trap.org/

Flytrap is an interactive database for displaying gene expression patterns, in particular P(GAL4) patterns, via an intuitive WWW based interface. This development consists of two components, the first being the HTML interface to the database and the second, a tool-kit for constructing and maintaining the database. The browser component of the project is entirely platform independent; based on javascript and HTML and therefore only requires a "standard" browser. This is to facilitate CD-ROM distribution and off-line browsing. Whether on-line or on CD, the basic browser structure does not reply on any server based scripts. Basic searching is now available. The search page uses javascript and will work off-line (i.e. from a CD-ROM copy). The construction tool-kit is UNIX based and requires an on-line web server. The tool-kit is used to compile the HTML browser interface from a simple database. The tool-kit part comprises a forms based HTML interface to the datasets allowing new information to b e added and updated very simply. We are also developing a java interface for the tool-kit that will enable us to edit and annotate images on-line. The basic browser interface is complete and a demonstration version can be accessed via the website. The first working version of the tool-kit is now on-line and is available for use.

Proper citation: flytrap (RRID:SCR_003075) Copy   


  • RRID:SCR_003015

    This resource has 100+ mentions.

http://www.genepaint.org

Digital atlas of gene expression patterns in developing and adult mouse. Several reference atlases are also available through this site. Expression patterns are determined by non-radioactive in situ hybridization on serial tissue sections. Sections are available from several developmental ages: E10.5, E14.5 (whole embryos), E15.5, P7 and P56 (brains only). To retrieve expression patterns, search by gene name, site of expression, GenBank accession number or sequence homology. For viewing expression patterns, GenePaint.org features virtual microscope tool that enables zooming into images down to cellular resolution.

Proper citation: GenePaint (RRID:SCR_003015) Copy   


  • RRID:SCR_002823

    This resource has 1000+ mentions.

http://www.fmrib.ox.ac.uk/fsl/

Software library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. Include registration, atlases, diffusion MRI tools for parameter reconstruction and probabilistic taractography, and viewer. Several brain atlases, integrated into FSLView and Featquery, allow viewing of structural and cytoarchitectonic standard space labels and probability maps for cortical and subcortical structures and white matter tracts. Includes Harvard-Oxford cortical and subcortical structural atlases, Julich histological atlas, JHU DTI-based white-matter atlases, Oxford thalamic connectivity atlas, Talairach atlas, MNI structural atlas, and Cerebellum atlas.

Proper citation: FSL (RRID:SCR_002823) Copy   


  • RRID:SCR_002998

    This resource has 10+ mentions.

http://briansimulator.org/

Software Python package for simulating spiking neural networks. Useful for neuroscientific modelling at systems level, and for teaching computational neuroscience. Intuitive and efficient neural simulator.

Proper citation: Brian Simulator (RRID:SCR_002998) Copy   


http://developingmouse.brain-map.org/

Map of gene expression in developing mouse brain revealing gene expression patterns from embryonic through postnatal stages. Provides information about spatial and temporal regulation of gene expression with database. Feature include seven sagittal reference atlases created with a developmental ontology. These anatomic atlases may be viewed alongside in situ hybridization (ISH) data as well as by itself.

Proper citation: Allen Developing Mouse Brain Atlas (RRID:SCR_002990) Copy   


http://projectreporter.nih.gov/project_info_description.cfm?aid=8661937&icde=19363283&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC

Initiative to assemble a multicenter team of expert neuroscientists to evaluate the late effects of Traumatic brain injury (TBI), including single and repetitive TBI of varying severity, and Chronic Traumatic Encephalopathy (CTE), using histological examination of postmortem bio specimens and neuroimaging tools as a foundation to develop in vivo diagnostics. As a first aim, this proposal will bring together a team of 5 accomplished neuropathologists in neurodegenerative disease to establish consensus criteria for the post-mortem diagnosis of CTE. This team will also define the stages of CTE pathology, the features that differentiate CTE from other neurodegenerations and the effects of substance abuse, and the characteristics of posttraumatic neurodegeneration after single TBI. As a second aim, this proposal will establish a national bio specimen and data bank for TBI (Understanding Neurological Injury and Traumatic Encephalopathy (UNITE) bio bank) by developing a nationwide brain donor registry and hotline to acquire high quality bio specimens and data. The UNITE bank will use strictly standardized protocols and a web-based interface to ensure that tissue and data are readily available to qualified investigators. Comprehensive retrospective clinical data including clinical symptoms, brain trauma and substance abuse history, and medical records (including common data elements) will be entered into a secure database. Behavioral/ mood dysfunction, cognitive changes, substance abuse and traumatic exposure will be correlated with quantitative assessment of the multifocal tauopathy, Ass deposition and axonal injury. As a third aim, neuroimaging signatures of the neuropathology will be determined in post-mortem tissue using high spatial resolution diffusion tensor imaging (DTI) and autoradiography using a highly selective PET ligand for tau. Quantitative assessment of axonal injury, tau, and Ass will be correlated with ex vivo DTI abnormalities and tau ligand autoradiography. Pilot neuroimaging studies of individuals at high risk for the development of CTE will also be conducted in the final 2 years of the proposal. This proposal will determine the clinical and neuroimaging correlates of CTE and posttraumatic neurodegeneration and create the groundwork for establishing their incidence and prevalence. This study will have a tremendous impact on public health of millions of Americans and greatly increase our understanding of the latent effects of brain trauma.

Proper citation: CTE and Post-traumatic Neurodegeneration: Neuropathology and Ex Vivo Imaging (RRID:SCR_006543) Copy   


https://fitbir.nih.gov/

Platform for Traumatic Brain Injury relevant data. System was developed to share data across entire TBI research field and to facilitate collaboration between laboratories and interconnectivity between informatics platforms. FITBIR implements interagency Common Data Elements for TBI research and provides tools and resources to extend data dictionary. Established submission strategy to ensure high quality and to provide maximum benefit to investigators. Qualified researchers can request access to data stored in FITBIR and/or data stored at federated repositories.

Proper citation: Federal Interagency Traumatic Brain Injury Research Informatics System (RRID:SCR_006856) Copy   


  • RRID:SCR_006761

    This resource has 1+ mentions.

http://theneuronetwork.com/

Professional networking site dedicated to those working, studying, or simply interested in the science of the brain. Those with personal and professional interests in neuroscience, neurology, psychology, and all related areas -- those studying neural activities in invertebrates up to the human brain, including brain-like systems and networks are welcome. The NeuroNetwork was built to allow students and researchers to find and interact with each other in a professional environment. You may create searchable profiles with your research interests; start a blog; upload poster presentations and videos; post and search job listings; form a virtual group based on your interests, geographical location, etc.; and view, post, and RSVP to upcoming meetings. And don''t just create a profile for yourself -- create one for your organization, institute, society, or even your lab as well.

Proper citation: NeuroNetwork (RRID:SCR_006761) Copy   


http://platform.invbrain.neuroinf.jp/

Database of information on nervous systems and behavior of various species of invertebrates and a large body of ancillary material to promote the use of invertebrate systems in research and education and facilitate information transfer to engineers that are looking for mechanisms that may be useful to solve a wide range of technological problems. The database is linked to explanations of the contents to allow users to familiarize themselves with the data and the context in which they were obtained. The platform has four entrance points tailored to different target user groups. The first entrance point is designed for users that are interested in using invertebrates for research purposes, in particular in the field of neuroscience, to assist them in initiating research projects. This includes databases of sensory systems, brains, and behavior of invertebrates, especially insects. The databases contain sensory organ structure and function, photographs and movies documenting insect behavior, data acquisition equipment and other instrumentation, software, material for eduction, and bibliography. A second entrance point is available for those that are concerned with implementations of design principles of invertebrate nervous systems and behavior in industrial applications. The third portal is destined for providing quick access for instructors that intend to use invertebrates for educational purposes and the remaining entrance point facilitates obtaining general comparative information on sensory and central nervous systems and behavior of invertebrates.

Proper citation: Invertebrate Brain Platform (RRID:SCR_006764) Copy   


  • RRID:SCR_006758

http://neuroade.christakou.org/

At neuroade, a Cognitive Neuroscience Laboratory, we study change in brain and behavior across multiple time-scales. Researchers in the lab combine a variety of methodologies to answer specific questions about typical and atypical behavior and development. We use functional magnetic resonance imaging (fMRI), peripheral psychophysiology (such as skin conductance responses), behavioral testing, genotyping analysis, and computational modeling. Most of our work takes place at the Centre for Integrative Neuroscience and Neurodynamics (CINN), and we all live in the Department of Psychology at the University of Reading. Our research is divided into several distinct yet highly interlinked themes, all converging in their application to understanding psychopathology -- summarised here in no particular order: * Decision-making and the Evaluation of Decision Outcomes * Dimensions of Impulsivity as a Foraging Strategy * Adolescent Development * Computational Modeling Probes of Individual Differences

Proper citation: neuroade (RRID:SCR_006758) Copy   


  • RRID:SCR_007030

    This resource has 1+ mentions.

http://www.parkinsons.org.uk/content/parkinsons-uk-brain-bank

A brain bank of the United Kingdom which collects human brains for Parkinsons disease research. The collection is comprised of brain, spinal cord and a sample of cerebrospinal fluid from people with and without Parkinson's after death. Researchers can fill out a brain tissue request form to order samples from the bank.

Proper citation: Parkinsons UK Brain Bank (RRID:SCR_007030) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SPARC Anatomical Working Group Resources

    Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within SPARC SAWG that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X