Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 176 results
Snippet view Table view Download 176 Result(s)
Click the to add this resource to a Collection

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

Probabilistic atlases covering 48 cortical and 21 subcortical structural areas, derived from structural data and segmentations kindly provided by the Harvard Center for Morphometric Analysis. T1-weighted images of 21 healthy male and 16 healthy female subjects (ages 18-50) were individually segmented by the CMA using semi-automated tools developed in-house. The T1-weighted images were affine-registered to MNI152 space using FLIRT (FSL), and the transforms then applied to the individual labels. Finally, these were combined across subjects to form population probability maps for each label. Segmentations used to create these atlases were provided by: David Kennedy and Christian Haselgrove, Centre for Morphometric Analysis, Harvard; Bruce Fischl, the Martinos Center for Biomedical Imaging, MGH; Janis Breeze and Jean Frazier from the Child and Adolescent Neuropsychiatric Research Program, Cambridge Health Alliance; Larry Seidman and Jill Goldstein from the Department of Psychiatry of Harvard Medical School.

Proper citation: Harvard - Oxford Cortical Structural Atlas (RRID:SCR_001476) Copy   


http://www.tbi-impact.org/

Project focused on advancing knowledge of prognosis, trial design and treatment in Traumatic Brain Injury. IMPACT has developed and validated prognostic models for classification and characterization of TBI series, and participated in development of standardization of data collection in TBI studies.

Proper citation: IMPACT: International Mission for Prognosis and Analysis of Clinical Trials in TBI (RRID:SCR_000539) Copy   


http://rsb.info.nih.gov/

Portal for NIH, NIMH, and NINDS scientific and computer resources including Mac sites, PC sites, Linux sites, intramural programs, intranet and the NIH JumpStart and Directory.

Proper citation: Research Services Branch National Institutes of Mental Health (RRID:SCR_001633) Copy   


http://www.nitrc.org/projects/dti_rat_atlas/

3D DTI anatomical rat brain atlases have been created by the UNC- Chapel Hill Department of Psychiatry and the CAMID research collaboration. There are three age groups, postnatal day 5, postnatal day 14, and postnatal day 72. The subjects were Sprague-Dawley rats that were controls in a study on cocaine abuse and development. The P5 and P14 templates were made from scans of twenty rats each (ten female, ten male); the P72, from six females. The individual cases have been resampled to isotropic resolution, manually skull-stripped, and deformably registered via an unbiased atlas building method to create a template for each age group. Each template was then manually segmented using itk-SNAP software. Each atlas is made up of 3 files, a template image, a segmentation, and a label file.

Proper citation: 3D DTI Atlas of the Rat Brain In Postnatal Day 5 14 and Adulthood (RRID:SCR_009437) Copy   


  • RRID:SCR_000421

    This resource has 1+ mentions.

http://www.nitrc.org/projects/pennhippoatlas/

Atlas of segmented and normalized high-resolution postmortem MRI of the human hippocampus. Additional data (raw images) is available through the SCM link. It requires knowing how to use CVS.

Proper citation: Penn Hippocampus Atlas (RRID:SCR_000421) Copy   


  • RRID:SCR_002981

    This resource has 50+ mentions.

http://www.emouseatlas.org

Detailed multidimensional digital multimodal atlas of C57BL/6J mouse nervous system with data and informatics pipeline that can automatically register, annotate, and visualize large scale neuroanatomical and connectivity data produced in histology, neuronal tract tracing, MR imaging, and genetic labeling. MAP2.0 interoperates with commonly used publicly available databases to bring together brain architecture, gene expression, and imaging information into single, simple interface.Resource to visualise mouse development, identify anatomical structures, determine developmental stage, and investigate gene expression in mouse embryo. eMouseAtlas portal page allows access to EMA Anatomy Atlas of Mouse Development and EMAGE database of gene expression.EMAGE is freely available, curated database of gene expression patterns generated by in situ techniques in developing mouse embryo. EMA, e-Mouse Atlas, is 3-D anatomical atlas of mouse embryo development including histology and includes EMAP ontology of anatomical structure, provides information about shape, gross anatomy and detailed histological structure of mouse, and framework into which information about gene function can be mapped.

Proper citation: eMouseAtlas (RRID:SCR_002981) Copy   


http://rgd.mcw.edu/rgdCuration/?module=portal&func=show&name=nuro

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 12,2023. Portal that provides researchers with easy access to data on rat genes, QTLs, strain models, biological processes and pathways related to neurological diseases. This resource also includes dynamic data analysis tools.

Proper citation: Rat Genome Database: Neurological Disease Portal (RRID:SCR_008685) Copy   


  • RRID:SCR_003312

http://datasharing.net

The U.S. National Institutes of Health Final NIH Statement on Sharing Research Data (NIH-OD-03-032) is now in effect. It specifies that all high-direct-cost NIH grant applications include plans for sharing of research data. To support and encourage collegial, enabling, and rewarding data sharing for neuroscience and beyond, the Laboratory of Neuroinformatics at Weill Medical College of Cornell University has established this site. A source of, and portal to, tools and proposals supporting the informed exchange of neuroscience data.

Proper citation: Datasharing.net (RRID:SCR_003312) Copy   


http://www.gensat.org/

Gene expression data and maps of mouse central nervous system. Gene expression atlas of developing adult central nervous system in mouse, using in situ hybridization and transgenic mouse techniques. Collection of pictorial gene expression maps of brain and spinal cord of mouse. Provides tools to catalog, map, and electrophysiologically record individual cells. Application of Cre recombinase technologies allows for cell-specific gene manipulation. Transgenic mice created by this project are available to scientific community.

Proper citation: Gene Expression Nervous System Atlas (RRID:SCR_002721) Copy   


  • RRID:SCR_003073

    This resource has 1000+ mentions.

http://rsb.info.nih.gov/nih-image/index.html

Public image processing and analysis program for Macintosh.

Proper citation: NIH Image (RRID:SCR_003073) Copy   


  • RRID:SCR_003131

    This resource has 100+ mentions.

https://neurobiobank.nih.gov/

National resource for investigators utilizing human post-mortem brain tissue and related biospecimens for their research to understand conditions of the nervous system. Federated network of brain and tissue repositories in the United States that collects, evaluates, stores, and makes available to researchers, brain and other tissues in a way that is consistent with the highest ethical and research standards. The NeuroBioBank ensures protection of the privacy and wishes of donors. Provides information to the public about the need for tissue donation and how to register as a donor.

Proper citation: NIH NeuroBioBank (RRID:SCR_003131) Copy   


  • RRID:SCR_002973

    This resource has 1+ mentions.

http://trans.nih.gov/bmap/resources/resources.htm

As part of BMAP gene discovery efforts, mouse brain cDNA libraries and Expressed Sequence Tags (ESTs) have been generated. Through this project a BMAP mouse brain UniGene set consisting of over 24,000 non-redundant members of unique clusters has been developed from EST sequencing of more than 50,000 cDNA clones from 10 regions of adult mouse brain, spinal cord, and retina (http://brainEST.eng.uiowa.edu/). In 2001, NIMH along with NICHD, NIDDK, and NIDA, awarded a contract to the University of Iowa ( M.B. Soares, PI) to isolate full-length cDNA clones corresponding to genes expressed in the developing mouse nervous system and determine their full-coding sequences. The BMAP mouse brain EST sequences can be accessed at NCBI's dbEST database (http://www.ncbi.nlm.nih.gov/dbEST/). Arrayed sets of BMAP mouse brain UniGenes and cDNA libraries, and individual BMAP cDNA clones can be purchased from Open Biosystems, Huntsville, AL (http://www.openbiosystems.com

Proper citation: BMAP cDNA Resources (RRID:SCR_002973) Copy   


http://www.nitrc.org/

Software repository for comparing structural (MRI) and functional neuroimaging (fMRI, PET, EEG, MEG) software tools and resources. NITRC collects and points to standardized information about structural or functional neuroimaging tool or resource.

Proper citation: NeuroImaging Tools and Resources Collaboratory (NITRC) (RRID:SCR_003430) Copy   


http://www.pediatricmri.nih.gov/

Data sets of clinical / behavioral and image data are available for download by qualified researchers from a seven year, multi-site, longitudinal study using magnetic resonance technologies to study brain maturation in healthy, typically-developing infants, children, and adolescents and to correlate brain development with cognitive and behavioral development. The information obtained in this study is expected to provide essential data for understanding the course of normal brain development as a basis for understanding atypical brain development associated with a variety of developmental, neurological, and neuropsychiatric disorders affecting children and adults. This study enrolled over 500 children, ranging from infancy to young adulthood. The goal was to study each participant at least three times over the course of the project at one of six Pediatric Centers across the United States. Brain MR and clinical/behavioral data have been compiled and analyzed at a Data Coordinating Center and Clinical Coordinating Center. Additionally, MR spectroscopy and DTI data are being analyzed. The study was organized around two objectives corresponding to two age ranges at the time of enrollment, each with its own protocols. * Objective 1 enrolled children ages 4 years, 6 months through 18 years (total N = 433). This sample was recruited across the six Pediatric Study Centers using community based sampling to reflect the demographics of the United States in terms of income, race, and ethnicity. The subjects were studied with both imaging and clinical/behavioral measures at two year intervals for three time points. * Objective 2 enrolled newborns, infants, toddlers, and preschoolers from birth through 4 years, 5 months, who were studied three or more times at two Pediatric Study Centers at intervals ranging from three months for the youngest subjects to one year as the children approach the Objective 1 age range. Both imaging and clinical/behavioral measures were collected at each time point. Participant recruitment used community based sampling that included hospital venues (e.g., maternity wards and nurseries, satellite physician offices, and well-child clinics), community organizations (e.g., day-care centers, schools, and churches), and siblings of children participating in other research at the Pediatric Study Centers. At timepoint 1, of those enrolled, 114 children had T1 scans that passed quality control checks. Staged data release plan: The first data release included structural MR images and clinical/behavioral data from the first assessments, Visit 1, for Objective 1. A second data release included structural MRI and clinical/behavioral data from the second visit for Objective 1. A third data release included structural MRI data for both Objective 1 and 2 and all time points, as well as preliminary spectroscopy data. A fourth data release added cortical thickness, gyrification and cortical surface data. Yet to be released are longitudinally registered anatomic MRI data and diffusion tensor data. A collaborative effort among the participating centers and NIH resulted in age-appropriate MR protocols and clinical/behavioral batteries of instruments. A summary of this protocol is available as a Protocol release document. Details of the project, such as study design, rationale, recruitment, instrument battery, MRI acquisition details, and quality controls can be found in the study protocol. Also available are the MRI procedure manual and Clinical/Behavioral procedure manuals for Objective 1 and Objective 2.

Proper citation: NIH MRI Study of Normal Brain Development (RRID:SCR_003394) Copy   


  • RRID:SCR_001559

    This resource has 1+ mentions.

http://kesm.cs.tamu.edu

A web-based, light-weight 3D volume viewer that serves large volumes (typically the whole brain) of high-resolution mouse brain images (~1.5 TB per brain, ~1 um resolution) from the Knife-Edge Scanning Microscope (KESM), invented by Bruce H. McCormick. Currently, KESMBA serves the following data sets: * Mouse: Whole-brain-scale Golgi (acquired 2008 spring): neuronal morphology: Choe et al. (2009) * Mouse: Whole-brain India Ink (acquired 2008 spring): vascular network: Choe et al. (2009); Mayerich et al. (2011); * Mouse: Whole-brain Golgi (acquired 2011 summer): neuronal morphology: Choe et al. (2011); Chung et al. (2011); * Mouse: Whole-brain Nissl (acquired 2009-2010 winter): somata (Choe et al. 2010) (Coming soon) They will ship you the full data set on a hard drive if you provide them with the hard drive and shipping cost.

Proper citation: KESM brain atlas (RRID:SCR_001559) Copy   


  • RRID:SCR_001596

http://www.pd-doc.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on December 02, 2011. Notice: This domain name expired on 10/29/11 and is pending renewal or deletion PD-DOC is a portal and a database resource, hosting a database and linking to other databases and data sets of clinical and translational data. PD-DOC functions to organize and facilitate clinical and translational research in Parkinson's disease. The PD-DOC Database contains standardized data collected by user institutions on large numbers of patients with Parkinsons disease and other parkinsonian disorders. In some cases, data is obtained at a single point in time, while in others data is collected repeatedly over time. The PD-DOC Database is composed of the Core Data Set (CDS) which consists of those variables required to be gathered for each subject whose data is entered into the PD-DOC database. In 2005, working groups of Udall Center and invited experts deliberated to establish the components of each CDS section (e.g. General Clinical, Cognitive/Behavioral, Postmortem Brain Neuropathological Findings). The PD-DOC CDS was established and designed to optimize data analyses and data mining for large numbers of subjects participating in a variety of research studies. In most cases corresponding DNA samples are available form the NINDS Human Genetic Repository (at Coriell). Much of the website is publicly available for viewing. To request access to sections of the website dealing with downloading or requesting data, requesting a consultation, or submitting data or other information you will need to register. Before registering, you should read the PD-DOC Policies. Note that PD-DOC data can be used for research purposes only. Once your registration is successfully completed you will be automatically logged into the website.

Proper citation: PD-DOC (RRID:SCR_001596) Copy   


  • RRID:SCR_002145

    This resource has 50+ mentions.

http://neuromorpho.org/index.jsp

Centrally curated inventory of digitally reconstructed neurons associated with peer-reviewed publications that contains some of the most complete axonal arborizations digitally available in the community. Each neuron is represented by a unique identifier, general information (metadata), the original and standardized ASCII files of the digital morphological reconstruction, and a set of morphometric features. It contains contributions from over 100 laboratories worldwide and is continuously updated as new morphological reconstructions are collected, published, and shared. Users may browse by species, brain region, cell type or lab name. Users can also download morphological reconstructions for research and analysis. Deposition and distribution of reconstruction files ultimately prevents data loss. Centralized curation and annotation aims at minimizing the effort required by data owners while ensuring a unified format. It also provides a one-stop entry point for all available reconstructions, thus maximizing data visibility and impact.

Proper citation: NeuroMorpho.Org (RRID:SCR_002145) Copy   


http://www.nitrc.org/projects/pediatric_mri

A database which contains longitudinal structural MRIs, spectroscopy, DTI and correlated clinical/behavioral data from approximately 500 healthy, normally developing children, ages newborn to young adult.

Proper citation: NIH Pediatric MRI Data Repository (RRID:SCR_014149) Copy   


  • RRID:SCR_014074

    This resource has 1+ mentions.

http://www.hedtags.org/

Strategy guide for HED Annotation. Framework for systematically describing laboratory and real world events.HED tags are comma separated path strings. Organized in forest of groups with roots Event, Item, Sensory presentation, Attribute, Action, Participant, Experiment context, and Paradigm. Used for preparing brain imaging data for automated analysis and meta analysis. Applied to brain imaging EEG, MEG, fNIRS, multimodal mobile brain or body imaging, ECG, EMG, GSR, or behavioral data. Part of Brain Imaging Data Structure standard for brain imaging.

Proper citation: HED Tags (RRID:SCR_014074) Copy   


http://www.nitrc.org/projects/iukf_2013/

A tractography algorithm for HARDI which provides a relatively accurate and efficient fiber tracking mechanism by reconstructing a bi-tensor model for underlying signals and exploiting intrinsic operations on the space of diffusion tensors. Given HARDI data sets, IUKF is capable of tracking in the presence of complex local geometries, such as crossing and kissing fibers. Reconstruction is only performed at the voxels along estimated fibers.

Proper citation: Intrinsic Unscented Kalman Filter (IUKF) Tractography Software v1.0 (RRID:SCR_014127) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SPARC Anatomical Working Group Resources

    Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within SPARC SAWG that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X