Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Portal provides information about nationwide study of more than 50,000 individuals to determine factors that predict disease severity and long-term health impacts of COVID-19.
Proper citation: Collaborative Cohort of Cohorts for COVID-19 Research (RRID:SCR_026322) Copy
https://github.com/tomcatsmith19/ArucoDetection
Automated rodent behavioral scoring system, complete with 3D design files and code/software. System monitors behavioral engagement using open-source software. 3D design files and necessary software has been made available, as well as code that can be used for data analysis.
Proper citation: ArUco (RRID:SCR_026572) Copy
https://github.com/Washington-University/HCPpipelines
Software package as set of tools, primarily shell scripts, for processing multi-modal, high-quality MRI images for the Human Connectome Project. Minimal preprocessing pipelines for structural, functional, and diffusion MRI that were developed by the HCP to accomplish many low level tasks, including spatial artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard space.
Proper citation: HCP Pipelines (RRID:SCR_026575) Copy
https://github.com/Yonghao-Holden/TEProf3
Software pipeline to detect Transposable Elements transcripts. Used to identify TE-derived promoters and transcripts using transcriptomic data from multiple sources, including short-read RNA-seq data, long-read RNA-seq data and single cell RNA-seq data.
Proper citation: TEProf3 (RRID:SCR_027288) Copy
https://github.com/smorabit/hdWGCNA
Software R package for performing weighted gene co-expression network analysis in high dimensional transcriptomics data such as single-cell RNA-seq or spatial transcriptomics.
Proper citation: hdWGCNA (RRID:SCR_027496) Copy
Web application for human-readable, searchable neuroimaging datasets using universally accessible JSON format and URL-based RESTful APIs. NeuroJSON.io is built upon highly scalable document-store NoSQL database technologies, specifically, open-source Apache CouchDB engine, that can handle millions of datasets without major performance penalties. Provides fine-grained data search capabilities to allow users to find, preview and re-combine complex data records from public datasets before download.
Proper citation: NeuroJSON.io (RRID:SCR_027793) Copy
http://www.fz-juelich.de/ime/spm_anatomy_toolbox
A MATLAB toolbox which uses three dimensional probabilistic cytoarchitechtonic maps to correlate microscopic, anatomic and functional data of the cerebral cortex. Correlating the activation foci identified in functional imaging studies of the human brain with structural (e.g., cytoarchitectonic) information on the activated areas is a major methodological challenge for neuroscience research. We here present a new approach to make use of three-dimensional probabilistic cytoarchitectonic maps, as obtained from the analysis of human post-mortem brains, for correlating microscopical, anatomical and functional imaging data of the cerebral cortex. We introduce a new, MATLAB based toolbox for the SPM2 software package which enables the integration of probabilistic cytoarchitectonic maps and results of functional imaging studies. The toolbox includes the functionality for the construction of summary maps combining probability of several cortical areas by finding the most probable assignment of each voxel to one of these areas. Its main feature is to provide several measures defining the degree of correspondence between architectonic areas and functional foci. The software, together with the presently available probability maps, is available as open source software to the neuroimaging community. This new toolbox provides an easy-to-use tool for the integrated analysis of functional and anatomical data in a common reference space.
Proper citation: SPM Anatomy Toolbox (RRID:SCR_013273) Copy
http://sourceforge.net/projects/powermap/
Software tool specifically designed for neuroimaging data that implements theoretical power calculation algorithms based on non-central random field theory. It can also calculate power for statistical analyses with FDR (false discovery rate) corrections. This GUI (graphical user interface)-based tool enables neuroimaging researchers without advanced knowledge in imaging statistics to calculate power and sample size in the form of 3D images. This tool is currently under limited release for beta testing. At this time, only users that have been directed to this site by the PowerMap developers will receive support.
Proper citation: PowerMap (RRID:SCR_006721) Copy
Open source software for automated and manual tracing of neurites from light microscopy stacks of images. NCTracer 2.0 is developed for the Windows 7, 64-bit operating system and requires a minimum of 4 GB of RAM. This version does not run on 32-bit computers, Mac or Linux OS.
Proper citation: Neural Circuit Tracer (RRID:SCR_000116) Copy
Repository of person centered measures that evaluates and monitors physical, mental, and social health in adults and children.
Proper citation: Patient-Reported Outcomes Measurement Information System (RRID:SCR_004718) Copy
Software tool to detect differential alternative splicing events from RNA-Seq data. Calculates P-value and false discovery rate that difference in isoform ratio of gene between two conditions exceeds given user-defined threshold. From RNA-Seq data can automatically detect and analyze alternative splicing events corresponding to all major types of alternative splicing patterns. Handles replicate RNA-Seq data from both paired and unpaired study design.
Proper citation: rMATS (RRID:SCR_023485) Copy
National resource for investigators utilizing human post-mortem brain tissue and related biospecimens for their research to understand conditions of the nervous system. Federated network of brain and tissue repositories in the United States that collects, evaluates, stores, and makes available to researchers, brain and other tissues in a way that is consistent with the highest ethical and research standards. The NeuroBioBank ensures protection of the privacy and wishes of donors. Provides information to the public about the need for tissue donation and how to register as a donor.
Proper citation: NIH NeuroBioBank (RRID:SCR_003131) Copy
http://www.bri.ucla.edu/research/resources
Brain bank resources which include postmortem human frozen brain tissue and matched cerebrospinal fluid (CSF) and blood available for scientists to search for etiopathogeneses of human disease. The National Neurological Research Specimen Bank and the Multiple Sclerosis Human Neurospecimen Bank maintains a collection of quick frozen and formalin fixed postmortem human brain tissue and frozen cerebrospinal fluid from patients with neurological diseases, including Alzheimer's Disease, amyotrophic lateral sclerosis, depressive disorder/suicide, and epilepsy, among others. Diagnoses are documented by clinical medical records and gross/microscopic neuropathology. The Neuropathology Laboratory at the UCLA Medical Center maintains a bank of frozen, formalin and paraformaldehyde-fixed and paraffin-embedded postmortem human brain tissues and frozen cerebrospinal fluid (CSF) from patients who die with Alzheimer's disease and other dementing and degenerative illnesses, as well as control materials removed in a similar fashion from patients who are neurologically normal.
Proper citation: Brain Research Institute Biobank Resources (RRID:SCR_008756) Copy
http://mayoresearch.mayo.edu/mayo/research/dickson_lab/
A brain bank and laboratory focused on memory and motor disorders. Brains are sent to the laboratory for diagnosis and research for the State of Florida Alzheimer Disease Initiative and for the Society for Progressive Supranuclear Palsy. As part of this brain banking function, fixed and frozen brain samples are obtained at autopsy and sent to the laboratory for diagnostic evaluation and for various types of research studies. The major types of analyses performed on the brain samples include neuro-histology, immunohistochemistry, confocal microscopy, electron microscopy and image analysis, as well as immunoassays. The latter are based upon Western blotting and enzyme linked immunoassays. The laboratory has a specific interest in the interface between normal aging and Alzheimer's disease, as well as in non-Alzheimer's degenerative disorders such as Lewy body dementia, corticobasal degeneration, progressive supranuclear palsy and frontotemporal dementia. The primary focus of research on aging is neuropathologic characterization of brains of individuals who had been prospectively and longitudinally evaluated during life. These studies aim to determine differences in a range of biologic parameters in brains of people with normal cognitive, mild cognitive impairment and dementia. Their focus on Parkinson's disease is to identify preclinical Parkinson's disease in order to develop means for early diagnosis.
Proper citation: Mayo Clinic Jacksonville: Neuropathology and Microscopy (RRID:SCR_008753) Copy
Collects, stores, and distributes samples of nervous tissue, cerebrospinal fluid, blood, and other tissue from HIV-infected individuals. The NNTC mission is to bolster research on the effects of HIV infection on human brain by providing high-quality, well-characterized tissue samples from patients who died with HIV, and for whom comprehensive neuromedical and neuropsychiatric data were gathered antemortem. Researchers can request tissues from patients who have been characterized by: * degree of neurobehavioral impairment * neurological and other clinical diagnoses * history of drug use * antiretroviral treatments * blood and CSF viral load * neuropathological diagnosis The NNTC encourages external researchers to submit tissue requests for ancillary studies. The Specimen Query Tool is a web-based utility that allows researchers to quickly sort and identify appropriate NNTC specimens to support their research projects. The results generated by the tool reflect the inventory at a previous time. Actual availability at the local repositories may vary as specimens are added or distributed to other investigators.
Proper citation: National NeuroAIDS Tissue Consortium (RRID:SCR_007323) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 7th, 2019. BAMS is an online resource for information about neural circuitry. The BAMS Nested Regions view focuses on the major brain regions and their relationships.
Proper citation: BAMS Nested Regions (RRID:SCR_000238) Copy
http://www.nitrc.org/projects/pediatric_mri
A database which contains longitudinal structural MRIs, spectroscopy, DTI and correlated clinical/behavioral data from approximately 500 healthy, normally developing children, ages newborn to young adult.
Proper citation: NIH Pediatric MRI Data Repository (RRID:SCR_014149) Copy
Strategy guide for HED Annotation. Framework for systematically describing laboratory and real world events.HED tags are comma separated path strings. Organized in forest of groups with roots Event, Item, Sensory presentation, Attribute, Action, Participant, Experiment context, and Paradigm. Used for preparing brain imaging data for automated analysis and meta analysis. Applied to brain imaging EEG, MEG, fNIRS, multimodal mobile brain or body imaging, ECG, EMG, GSR, or behavioral data. Part of Brain Imaging Data Structure standard for brain imaging.
Proper citation: HED Tags (RRID:SCR_014074) Copy
http://www.nitrc.org/projects/iukf_2013/
A tractography algorithm for HARDI which provides a relatively accurate and efficient fiber tracking mechanism by reconstructing a bi-tensor model for underlying signals and exploiting intrinsic operations on the space of diffusion tensors. Given HARDI data sets, IUKF is capable of tracking in the presence of complex local geometries, such as crossing and kissing fibers. Reconstruction is only performed at the voxels along estimated fibers.
Proper citation: Intrinsic Unscented Kalman Filter (IUKF) Tractography Software v1.0 (RRID:SCR_014127) Copy
http://krasnow1.gmu.edu/cn3/index3.html
Multidisciplinary research team devoted to the study of basic neuroscience with a specific interest in the description and generation of dendritic morphology, and in its effect on neuronal electrophysiology. In the long term, they seek to create large-scale, anatomically plausible neural networks to model entire portions of a mammalian brain (such as a hippocampal slice, or a cortical column). Achievements by the CNG include the development of software for the quantitative analysis of dendritic morphology, the implementation of computational models to simulate neuronal structure, and the synthesis of anatomically accurate, large scale neuronal assemblies in virtual reality. Based on biologically plausible rules and biophysical determinants, they have designed stochastic models that can generate realistic virtual neurons. Quantitative morphological analysis indicates that virtual neurons are statistically compatible with the real data that the model parameters are measured from. Virtual neurons can be generated within an appropriate anatomical context if a system level description of the surrounding tissue is included in the model. In order to simulate anatomically realistic neural networks, axons must be grown as well as dendrites. They have developed a navigation strategy for virtual axons in a voxel substrate.
Proper citation: Computational Neuroanatomy Group (RRID:SCR_007150) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.