Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A modular and extensible web-based data management system that integrates all aspects of a multi-center study, from heterogeneous data acquisition to storage, processing and ultimately dissemination, within a streamlined platform. Through a standard web browser, users are able to perform a wide variety of tasks, such as data entry, 3D image visualization and data querying. LORIS also stores data independently from any image processing pipeline, such that data can be processed by external image analysis software tools. LORIS provides a secure web-based and database-driven infrastructure to automate the flow of clinical data for complex multi-site neuroimaging trials and studies providing researchers with the ability to easily store, link, and access significant quantities of both scalar (clinical, psychological, genomic) and multi-dimensional (imaging) data. LORIS can collect behavioral, neurological, and imaging data, including anatomical and functional 3D/4D MRI models, atlases and maps. LORIS also functions as a project monitoring and auditing platform to oversee data acquisition across multiple study sites. Confidentiality during multi-site data sharing is provided by the Subject Profile Management System, which can perform automatic removal of confidential personal information and multiple real-time quality control checks. Additionally, web interactions with the LORIS portal take place over an encrypted channel via SSL, ensuring data security. Additional features such as Double Data Entry and Statistics and Data Query GUI are included.
Proper citation: LORIS - Longitudinal Online Research and Imaging System (RRID:SCR_000590) Copy
http://www.nitrc.org/projects/atp
Autism research program that makes available post-mortem brain tissue to qualified scientists all over the world. Working directly with tissue banks, organ procurement agencies, medical examiners and the general public, this is the largest program dedicated to increasing and enhancing the availability of post-mortem brain tissue for basic research in autism. To date, the ATP has collected and stored more than 170 brains in their repositories at Harvard (US) and Oxford (UK). These brains are processed by formalin fixation and/or snap frozen to properly provide high quality tissue of all brain regions, in support of biological research in autism. The ATP is unique in that they diligently pursue all available clinical data (pre and post mortem) on tissue donors in order to create the most biologically relevant brain repository for autism research. These data, together with tissue resources from both banks and associated repositories, are presented to all interested researchers through their extensive web-based data portal (login required). The ATP is not a brain bank, but works directly with the Harvard Brain Tissue Resource Center in Boston (HBTRC), Massachusetts to serve as its tissue repository. This program augments brain bank functions by: * Creating the most biologically relevant brain tissue repository possible * Fully covering all costs associated with brain extraction and transfer to the repositories at Harvard (US and Canada) and Oxford (UK). * Providing scientific oversight of tissue distributions * Overseeing and managing all tissue grants * Clinically phenotyping and acquiring extensive medical data on all of their donors * Providing continuing family support and communication to all of their donors * Directly supporting researchers to facilitate autism research * Maintaining a robust web based data management and secure on-line global interface system * Developing and supporting ATP established scientific initiatives * Actively providing public outreach and education The ATP is not a clinical organ procurement agency, but rather they facilitate the wishes of donors and families to donate their tissue to autism research. Through the ATP's established international infrastructure, they work with any accredited tissue bank, organ procurement agency, or medical examiner that receives a family's request to donate their loved one's tissue to the program. Once contacted, the ATP will insure that the family's request to donate their loved one's tissue is faithfully met, covering all costs to the family and partnering agency as well as ensuring the tissues' proper and rapid transport to the ATP's repository at the Harvard Brain Tissue Resource Center (HBTRC) in Boston, Massachusetts.
Proper citation: Autism Tissue Program (RRID:SCR_000651) Copy
http://www.nitrc.org/projects/cabn/
Construct and analyse brain network is a brain network visualization tool, which can help researchers to visualize construct and analyse resting state functional brain networks from different levels in a quick, easy and flexible way. Entrance parameter of construct and analyse brain network is export parameters of dparsf software.It would be greatly appreciated if you have any suggestions about the package or manual.
Proper citation: BrainNetworkConstructionAnalysisPlatform (RRID:SCR_000854) Copy
Collection based on a collaborative effort of popular neuroscience research software for the Debian operating system as well as Ubuntu and other derivatives. Popular packages include AFNI, FSL, PyMVPA and many others. It contains both unofficial or prospective packages which are not (yet) available from the main Debian archive, as well as backported or simply rebuilt packages also available elsewhere. A listing of current and planned projects is available if you want to get involved. The main goal of the project is to provide a versatile and convenient environment for neuroscientific research that is based on open-source software. To this end, the project offers a package repository that complements the main Debian (and Ubuntu) archive. NeuroDebian is not yet another Linux distribution, but rather an effort inside the Debian project itself. Software packages are fully integrated into the Debian system and from there will eventually migrate into Ubuntu as well. With NeuroDebian, installing and updating neuroscience software is no different from any other part of the operating system. Maintaining a research software environment becomes as easy as installing an editor. There is also virtual machine to test NeuroDebian on Windows or Mac OS. If you want to see your software packaged for Debian, please drop them a note.
Proper citation: neurodebian (RRID:SCR_004401) Copy
http://openconnectomeproject.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. Connectomes repository to facilitate the analysis of connectome data by providing a unified front for connectomics research. With a focus on Electron Microscopy (EM) data and various forms of Magnetic Resonance (MR) data, the project aims to make state-of-the-art neuroscience open to anybody with computer access, regardless of knowledge, training, background, etc. Open science means open to view, play, analyze, contribute, anything. Access to high resolution neuroanatomical images that can be used to explore connectomes and programmatic access to this data for human and machine annotation are provided, with a long-term goal of reconstructing the neural circuits comprising an entire brain. This project aims to bring the most state-of-the-art scientific data in the world to the hands of anybody with internet access, so collectively, we can begin to unravel connectomes. Services: * Data Hosting - Their Bruster (brain-cluster) is large enough to store nearly any modern connectome data set. Contact them to make your data available to others for any purpose, including gaining access to state-of-the-art analysis and machine vision pipelines. * Web Viewing - Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID) is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by Google Maps, enhanced to allow the exploration of 3D image data. View the fork of the code or go directly to view the data. * Volume Cutout Service - RESTful API that enables you to select any arbitrary volume of the 3d database (3ddb), and receive a link to download an HDF5 file (for matlab, C, C++, or C#) or a NumPy pickle (for python). Use some other programming language? Just let them know. * Annotation Database - Spatially co-registered volumetric annotations are compactly stored for efficient queries such as: find all synapses, or which neurons synapse onto this one. Create your own annotations or browse others. *Sample Downloads - In addition to being able to select arbitrary downloads from the datasets, they have also collected a few choice volumes of interest. * Volume Viewer - A web and GPU enabled stand-alone app for viewing volumes at arbitrary cutting planes and zoom levels. The code and program can be downloaded. * Machine Vision Pipeline - They are building a machine vision pipeline that pulls volumes from the 3ddb and outputs neural circuits. - a work in progress. As soon as we have a stable version, it will be released. * Mr. Cap - The Magnetic Resonance Connectome Automated Pipeline (Mr. Cap) is built on JIST/MIPAV for high-throughput estimation of connectomes from diffusion and structural imaging data. * Graph Invariant Computation - Upload your graphs or streamlines, and download some invariants. * iPad App - WholeSlide is an iPad app that accesses utilizes our open data and API to serve images on the go.
Proper citation: Open Connectome Project (RRID:SCR_004232) Copy
http://www.picsl.upenn.edu/ANTS/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. Software package designed to enable researchers with advanced tools for brain and image mapping. Many of the ANTS registration tools are diffeomorphic*, but deformation (elastic and BSpline) transformations are available. Unique components of ANTS include multivariate similarity metrics, landmark guidance, the ability to use label images to guide the mapping and both greedy and space-time optimal implementations of diffeomorphisms. The symmetric normalization (SyN) strategy is a part of the ANTS toolkit as is directly manipulated free form deformation (DMFFD). *Diffeomorphism: a differentiable map with differentiable inverse. In general, these maps are generated by integrating a time-dependent velocity field. ANTS Applications: * Gray matter morphometry based on the jacobian and/or cortical thickness. * Group and single-subject optimal templates. * Multivariate DT + T1 brain templates and group studies. * Longitudinal brain mapping -- special similarity metric options. * Neonatal and pediatric brain segmentation. * Pediatric brain mapping. * T1 brain mapping guided by tractography and connectivity. * Diffusion tensor registration based on scalar or connectivity data. * Brain mapping in the presence of lesions. * Lung and pulmonary tree registration. * User-guided hippocampus labeling, also of sub-fields. * Group studies and statistical analysis of cortical thickness, white matter volume, diffusion tensor-derived metrics such as fractional anisotropy and mean diffusion., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: ANTS - Advanced Normalization ToolS (RRID:SCR_004757) Copy
Portal and tools for sharing and editing neurophysiological and behavioral data for brain-machine interface research. Users can search for existing data or login with their Google, Facebook, or Twitter account and upload new data. Their main focus is on supporting brain-machine interface research, so we encourage users to not just provide recordings of brain activity data, but also information about stimuli, etc., so that statistical relationships can be found between stimuli and/or subject behavior and brain activity. The Matlab tools are for writing, reading, and converting Neuroshare files, the common file format. A free, open source desktop tool for editing neurophysiological data for brain-machine interface research is also available: https://github.com/ATR-DNI/BrainLiner Since data formats aren''''t standardized between programs and researchers, data and analysis programs for data cannot be easily shared. Neuroshare was selected as the common file format. Neuroshare can contain several types of neurophysiological data because of its high flexibility, including analog time-series data and neuronal spike timing. Some applications have plug-ins or libraries available that can read Neuroshare format files, thus making Neuroshare somewhat readily usable. Neuroshare can contain several types of neurophysiological data, but there were no easy tools to convert data into the Neuroshare format, so they made and are providing a Neuroshare Converter Library and Simple Converter using the library. In future work they will make and provide many more useful tools for data sharing. Shared experiments include: EMG signal, Takemiya Exp, Reconstruct (Visual image reconstruction from human brain activity using a combination of multi-scale local image decoders), SPIKE data, Speech Imagery Dataset (Single-trial classification of vowel speech imagery using common spatial patterns), Functional Multineuron Calcium Imaging (fMCI), Rock-paper-scissors (The data was obtained from subject while he make finger-form of rock/paper/scissors). They also have a page at https://www.facebook.com/brainliner where you can contact us
Proper citation: BrainLiner (RRID:SCR_004951) Copy
Open platform for analyzing and sharing neuroimaging data from human brain imaging research studies. Brain Imaging Data Structure ( BIDS) compliant database. Formerly known as OpenfMRI. Data archives to hold magnetic resonance imaging data. Platform for sharing MRI, MEG, EEG, iEEG, and ECoG data.
Proper citation: OpenNeuro (RRID:SCR_005031) Copy
http://neurolex.org/wiki/Main_Page
A freely editable semantic wiki for community-based curation of the terms used in Neuroscience. Entries are curated and eventually incorporated into the formal NIFSTD ontology. NeuroLex also includes a Resource branch for community members to freely add neuroscience relevant resources that do not become part of NIFSTD ontology but rather make up the NIF Registry. As part of the NIF, we provide a simple search interface to many different sources of neuroscience information and data. To make this search more effective, we are constructing ontologies to help organize neuroscience concepts into category hierarchies, e.g., neuron is a cell. These categories provide the means to perform more effective searches and also to organize and understand the information that is returned. But an important adjunct to this activity is to clearly define all of the terms that we use to describe our data, e.g., anatomical terms, techniques, organism names. Because wikis provide an easy interface for communities to contribute their knowledge, we started the NeuroLex.
Proper citation: NeuroLex (RRID:SCR_005402) Copy
http://fcon_1000.projects.nitrc.org/
Collection of resting state fMRI (R-fMRI) datasets from sites around world. It demonstrates open sharing of R-fMRI data and aims to emphasize aggregation and sharing of well-phenotyped datasets.
Proper citation: 1000 Functional Connectomes Project (RRID:SCR_005361) Copy
http://www.biological-networks.org/pubs/suppl/sinomo/
Analysis-tool which identifies singular node motifs in a network. Network nodes can be described by node-motifs. It is an improvement to the method described in Costa et al. (2009).
Proper citation: SINOMO (RRID:SCR_005286) Copy
http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html#
A grassroots initiative dedicated to accelerating the scientific community''''s understanding of the neural basis of ADHD through the implementation of open data-sharing and discovery-based science. They believe that a community-wide effort focused on advancing functional and structural imaging examinations of the developing brain will accelerate the rate at which neuroscience can inform clinical practice. The ADHD-200 Global Competition invited participants to develop diagnostic classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging (MRI) of the brain. Applying their tools, participants provided diagnostic labels for previously unlabeled datasets. The competition assessed diagnostic accuracy of each submission and invited research papers describing novel, neuroscientific ideas related to ADHD diagnosis. Twenty-one international teams, from a mix of disciplines, including statistics, mathematics, and computer science, submitted diagnostic labels, with some trying their hand at imaging analysis and psychiatric diagnosis for the first time. The data for the competition was provided by the ADHD-200 Consortium. Consortium members from institutions around the world provided de-identified, HIPAA compliant imaging datasets from almost 800 children with and without ADHD. A phenotypic file including all of the test set subjects and their diagnostic codes can be downloaded. Winner is presented. The ADHD-200 consortium included: * Brown University, Providence, RI, USA (Brown) * The Kennedy Krieger Institute, Baltimore, MD, USA (KKI) * The Donders Institute, Nijmegen, The Netherlands (NeuroImage) * New York University Medical Center, New York, NY, USA (NYU) * Oregon Health and Science University, Portland, OR, USA (OHSU) * Peking University, Beijing, P.R.China (Peking 1-3) * The University of Pittsburgh, Pittsburgh, PA, USA (Pittsburgh) * Washington University in St. Louis, St. Louis, MO, USA (WashU)
Proper citation: ADHD-200 Sample (RRID:SCR_005358) Copy
A flexible software platform for distributed processing, analysis, exchange and visualization of brain imaging data. The expected result is a middleware platform that will render the processing environment (hardware, operating systems, storage servers, etc...) transparent to a remote user. Interaction with a standard web browser allows application of complex algorithm pipelines to large datasets stored at remote locations using a mixture of network available resources such as small clusters, neuroimaging tools and databases as well as Compute Canada's High Performance Computing Centers (HPC). Though the focus of CBRAIN is providing tools for use by brain imaging researchers, the platform is generalizable to other imaging domains, such as radiology, surgical planning and heart imaging, with profound consequences for Canadian medical research. CBRAIN expanded its concept to include international partners in the US, Germany and Korea. As of December 2010, GBRAIN has made significant progress with the original three partners and has developed new partners in Singapore, China, India, and Latin America. CBRAIN is currently deployed on 6 Compute Canada HPC clusters, one German HPC cluster and 3 clusters local to McGill University Campus, totaling more than 80,000 potential CPU cores.
Proper citation: CBRAIN (RRID:SCR_005513) Copy
http://www.cma.mgh.harvard.edu/iatr/
A centrally available listing of all image analysis tools that are available to the neuroscience community in order to facilitate the development, identification, and sharing of tools. It is hoped that this helps the tool developers to get their tools to a larger user community and to reduce redundancy (or at least utilize tool redundancy to facilitate optimal tool design) in tool development. This also helps tool users in identification of the existing tools for specific problems as they arise. The registry is designed to be self-moderated. This means that all tool entries are owned by some responsible party who enters the tool information, and keeps it up to date via the Web.
Proper citation: Internet Analysis Tools Registry (RRID:SCR_005638) Copy
Platform for Traumatic Brain Injury relevant data. System was developed to share data across entire TBI research field and to facilitate collaboration between laboratories and interconnectivity between informatics platforms. FITBIR implements interagency Common Data Elements for TBI research and provides tools and resources to extend data dictionary. Established submission strategy to ensure high quality and to provide maximum benefit to investigators. Qualified researchers can request access to data stored in FITBIR and/or data stored at federated repositories.
Proper citation: Federal Interagency Traumatic Brain Injury Research Informatics System (RRID:SCR_006856) Copy
https://itunes.apple.com/gb/app/neuropub-visualizer/id405721542?mt=8
A NIfTI visualizer for statistical brain images (fMRI, VBM, etc) the iPad. The visualizer displays these images as overlay on the MNI standard brain. You can use it to store all your statistical images from your fMRI / VBM / TBSS studies and visualise them in 2D and 3D. Use NeuroPub as a library for your statistical images. It's the perfect app to bring to meetings, conferences, etc, and show your latest results.
Proper citation: NeuroPub Visualizer (RRID:SCR_006797) Copy
http://scalablebrainatlas.incf.org/
A web-based, interactive brain atlas viewer, containing a growing number of atlas templates for various species, including mouse, macaque and human. Standard features include fast brain region lookup, point and click to select a region and view its full 3D extent, mark a stereotaxic coordinate and view all regions in a hierarchy. Built-in extensions are the CoCoMac plugin, which provides a spatial display of Macaque connectivity, and a service to transform stereotaxic coordinates to and from the INCF Waxholm space for the mouse. Three dimensional renderings of brain regions are available through a Matlab interface (local installation of Matlab required). The SBA is designed to be customizable. External users can create plugins, hosted on their own servers, to interactively attach images or data to spatial atlas locations. This fully web-based display engine for brain atlases and topologies allows client websites to show brain region related data in a 3D interactive context. Currently available atlases are: * Macaque: The Paxinos Rhesus Monkey atlas (2000) * Macaque: Various templates available through Caret, registered to F99 space: Felleman and Van Essen (1991), Lewis and Van Essen (2000), Regional Map from K��tter and Wanke (2005), Paxinos Rhesus Monkey (2000) * Macaque: The NeuroMaps Macaque atlas (2008) * Mouse: The INCF Waxholm Space for the mouse (2011). Previous versions available. * Mouse: The Allen Mouse Brain volumetric atlas (ABA07) * Human: The LPBA40 parcellation, registered to SRI24 space A variety of services are being developed around the templates contained in the Scalable Brain Atlas. For example, you can include thumbnails of brain regions in your own webpage. Other applications include: * Analyze atlas templates in Matlab * List all regions belonging to the given template * List of supported atlas templates * Find region by coordinate * Color-coded PNG (bitmap) or SVG (vector) image of a brain atlas slice * Region thumbnail in 2D (slice) or 3D (stack of slices) The Scalable Brain Atlas is created by Rembrandt Bakker and Gleb Bezgin, under supervision of Rolf K��tter in the NeuroPhysiology and -Informatics group of the Donders Institute, Radboud UMC Nijmegen.
Proper citation: Scalable Brain Atlas (RRID:SCR_006934) Copy
http://www.bmu.psychiatry.cam.ac.uk/software/
Suite of programs developed for fMRI analysis in a Virtual Pipeline Laboratory facilitates combining program modules from different software packages into processing pipelines to create analysis solutions which are not possible with a single software package alone. Current pipelines include fMRI analysis, statistical testing based on randomization methods and fractal spectral analysis. Pipelines are continually being added. The software is mostly written in C. This fMRI analysis package supports batch processing and comprises the following general functions at the first level of individual image analysis: movement correction (interpolation and regression), time series modeling, data resampling in the wavelet domain, hypothesis testing at voxel and cluster levels. Additionally, there is code for second level analysis - group and factorial or ANOVA mapping - after co-registration of voxel statistic maps from individual images in a standard space. The main point of difference from other fMRI analysis packages is the emphasis throughout on the use of data resampling (permutation or randomization) as a basis for inference on individual, group and factorial test statistics at voxel and cluster levels of resolution.
Proper citation: Cambridge Brain Activation (RRID:SCR_007109) Copy
http://bric.unc.edu/ideagroup/free-softwares/ABSORB/
This software package implements an algorithm for effective groupwise registration. The required input is a set of 3D MR intensity images (in Analyze format with paired .hdr and .img files) with a text file (.txt) listing all header file (.hdr) names. The output is the set of registered images together with the corresponding dense deformation fields. This software has been tested on Windows XP (32-bit) and Linux (64-bit, kernel version 2.6.18-194.el5). The images should be pre-processed before applying ABSORB: * All brain MR images used as inputs to ABSORB should be in the same situation (e.g., skull-stripped or not, cerebellum removed or not, etc.). * The input images should be in Analyze format with paired header and image files. This software was developed in IDEA group in UNC-Chapel Hill.
Proper citation: ABSORB: Atlas Building by Self-Organized Registration and Bundling (RRID:SCR_007018) Copy
http://www.cns.atr.jp/dni/en/downloads/tools-for-brain-behavior-data-sharing/
This is MATLAB library to create Neuroshare data format. You can convert your own data into Neuroshare format file.
Proper citation: Matlab Neuroshare Library (RRID:SCR_006957) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.