Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A freely available software tool available for the Windows and Linux platform, as well as the Online version Applet, for the analysis, comparison and search of digital reconstructions of neuronal morphologies. For the quantitative characterization of neuronal morphology, LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions, including: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of 20 neurons. The tool is available for either online use on any Java-enabled browser and platform or may be downloaded for local execution under Windows and Linux.
Proper citation: L-Measure (RRID:SCR_003487) Copy
http://neuroscienceblueprint.nih.gov/
Collaborative framework that includes the NIH Office of the Director and the 14 NIH Institutes and Centers that support research on the nervous system. By pooling resources and expertise, the Blueprint identifies cross-cutting areas of research, and confronts challenges too large for any single Institute or Center. The Blueprint makes collaboration a day-to-day part of how the NIH does business in neuroscience, complementing the basic missions of Blueprint partners. During each fiscal year, the partners contribute a small percentage of their funds to a common pool. Since the Blueprint's inception in 2004, this pool has comprised less than 1 percent of the total neuroscience research budget of the partners. In 2009, the Blueprint Grand Challenges were launched to catalyze research with the potential to transform our basic understanding of the brain and our approaches to treating brain disorders. * The Human Connectome Project is an effort to map the connections within the healthy brain. It is expected to help answer questions about how genes influence brain connectivity, and how this in turn relates to mood, personality and behavior. The investigators will collect brain imaging data, plus genetic and behavioral data from 1,200 adults. They are working to optimize brain imaging techniques to see the brain's wiring in unprecedented detail. * The Grand Challenge on Pain supports research to understand the changes in the nervous system that cause acute, temporary pain to become chronic. The initiative is supporting multi-investigator projects to partner researchers in the pain field with researchers in the neuroplasticity field. * The Blueprint Neurotherapeutics Network is helping small labs develop new drugs for nervous system disorders. The Network provides research funding, plus access to millions of dollars worth of services and expertise to assist in every step of the drug development process, from laboratory studies to preparation for clinical trials. Project teams across the U.S. have received funding to pursue drugs for conditions from vision loss to neurodegenerative disease to depression. Since its inception in 2004, the Blueprint has supported the development of new resources, tools and opportunities for neuroscientists. For example, the Blueprint supports several training programs to help students pursue interdisciplinary areas of neuroscience, and to bring students from underrepresented groups into the neurosciences. The Blueprint also funds efforts to develop new approaches to teaching neuroscience through K-12 instruction, museum exhibits and web-based platforms. From fiscal years 2007 to 2009, the Blueprint focused on three major themes of neuroscience - neurodegeneration, neurodevelopment, and neuroplasticity. These efforts enabled unique funding opportunities and training programs, and helped establish new resources including the Blueprint Non-Human Primate Brain Atlas.
Proper citation: NIH Blueprint for Neuroscience Research (RRID:SCR_003670) Copy
Collection based on a collaborative effort of popular neuroscience research software for the Debian operating system as well as Ubuntu and other derivatives. Popular packages include AFNI, FSL, PyMVPA and many others. It contains both unofficial or prospective packages which are not (yet) available from the main Debian archive, as well as backported or simply rebuilt packages also available elsewhere. A listing of current and planned projects is available if you want to get involved. The main goal of the project is to provide a versatile and convenient environment for neuroscientific research that is based on open-source software. To this end, the project offers a package repository that complements the main Debian (and Ubuntu) archive. NeuroDebian is not yet another Linux distribution, but rather an effort inside the Debian project itself. Software packages are fully integrated into the Debian system and from there will eventually migrate into Ubuntu as well. With NeuroDebian, installing and updating neuroscience software is no different from any other part of the operating system. Maintaining a research software environment becomes as easy as installing an editor. There is also virtual machine to test NeuroDebian on Windows or Mac OS. If you want to see your software packaged for Debian, please drop them a note.
Proper citation: neurodebian (RRID:SCR_004401) Copy
http://openconnectomeproject.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. Connectomes repository to facilitate the analysis of connectome data by providing a unified front for connectomics research. With a focus on Electron Microscopy (EM) data and various forms of Magnetic Resonance (MR) data, the project aims to make state-of-the-art neuroscience open to anybody with computer access, regardless of knowledge, training, background, etc. Open science means open to view, play, analyze, contribute, anything. Access to high resolution neuroanatomical images that can be used to explore connectomes and programmatic access to this data for human and machine annotation are provided, with a long-term goal of reconstructing the neural circuits comprising an entire brain. This project aims to bring the most state-of-the-art scientific data in the world to the hands of anybody with internet access, so collectively, we can begin to unravel connectomes. Services: * Data Hosting - Their Bruster (brain-cluster) is large enough to store nearly any modern connectome data set. Contact them to make your data available to others for any purpose, including gaining access to state-of-the-art analysis and machine vision pipelines. * Web Viewing - Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID) is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by Google Maps, enhanced to allow the exploration of 3D image data. View the fork of the code or go directly to view the data. * Volume Cutout Service - RESTful API that enables you to select any arbitrary volume of the 3d database (3ddb), and receive a link to download an HDF5 file (for matlab, C, C++, or C#) or a NumPy pickle (for python). Use some other programming language? Just let them know. * Annotation Database - Spatially co-registered volumetric annotations are compactly stored for efficient queries such as: find all synapses, or which neurons synapse onto this one. Create your own annotations or browse others. *Sample Downloads - In addition to being able to select arbitrary downloads from the datasets, they have also collected a few choice volumes of interest. * Volume Viewer - A web and GPU enabled stand-alone app for viewing volumes at arbitrary cutting planes and zoom levels. The code and program can be downloaded. * Machine Vision Pipeline - They are building a machine vision pipeline that pulls volumes from the 3ddb and outputs neural circuits. - a work in progress. As soon as we have a stable version, it will be released. * Mr. Cap - The Magnetic Resonance Connectome Automated Pipeline (Mr. Cap) is built on JIST/MIPAV for high-throughput estimation of connectomes from diffusion and structural imaging data. * Graph Invariant Computation - Upload your graphs or streamlines, and download some invariants. * iPad App - WholeSlide is an iPad app that accesses utilizes our open data and API to serve images on the go.
Proper citation: Open Connectome Project (RRID:SCR_004232) Copy
http://www.picsl.upenn.edu/ANTS/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. Software package designed to enable researchers with advanced tools for brain and image mapping. Many of the ANTS registration tools are diffeomorphic*, but deformation (elastic and BSpline) transformations are available. Unique components of ANTS include multivariate similarity metrics, landmark guidance, the ability to use label images to guide the mapping and both greedy and space-time optimal implementations of diffeomorphisms. The symmetric normalization (SyN) strategy is a part of the ANTS toolkit as is directly manipulated free form deformation (DMFFD). *Diffeomorphism: a differentiable map with differentiable inverse. In general, these maps are generated by integrating a time-dependent velocity field. ANTS Applications: * Gray matter morphometry based on the jacobian and/or cortical thickness. * Group and single-subject optimal templates. * Multivariate DT + T1 brain templates and group studies. * Longitudinal brain mapping -- special similarity metric options. * Neonatal and pediatric brain segmentation. * Pediatric brain mapping. * T1 brain mapping guided by tractography and connectivity. * Diffusion tensor registration based on scalar or connectivity data. * Brain mapping in the presence of lesions. * Lung and pulmonary tree registration. * User-guided hippocampus labeling, also of sub-fields. * Group studies and statistical analysis of cortical thickness, white matter volume, diffusion tensor-derived metrics such as fractional anisotropy and mean diffusion., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: ANTS - Advanced Normalization ToolS (RRID:SCR_004757) Copy
Platform for Traumatic Brain Injury relevant data. System was developed to share data across entire TBI research field and to facilitate collaboration between laboratories and interconnectivity between informatics platforms. FITBIR implements interagency Common Data Elements for TBI research and provides tools and resources to extend data dictionary. Established submission strategy to ensure high quality and to provide maximum benefit to investigators. Qualified researchers can request access to data stored in FITBIR and/or data stored at federated repositories.
Proper citation: Federal Interagency Traumatic Brain Injury Research Informatics System (RRID:SCR_006856) Copy
http://scalablebrainatlas.incf.org/
A web-based, interactive brain atlas viewer, containing a growing number of atlas templates for various species, including mouse, macaque and human. Standard features include fast brain region lookup, point and click to select a region and view its full 3D extent, mark a stereotaxic coordinate and view all regions in a hierarchy. Built-in extensions are the CoCoMac plugin, which provides a spatial display of Macaque connectivity, and a service to transform stereotaxic coordinates to and from the INCF Waxholm space for the mouse. Three dimensional renderings of brain regions are available through a Matlab interface (local installation of Matlab required). The SBA is designed to be customizable. External users can create plugins, hosted on their own servers, to interactively attach images or data to spatial atlas locations. This fully web-based display engine for brain atlases and topologies allows client websites to show brain region related data in a 3D interactive context. Currently available atlases are: * Macaque: The Paxinos Rhesus Monkey atlas (2000) * Macaque: Various templates available through Caret, registered to F99 space: Felleman and Van Essen (1991), Lewis and Van Essen (2000), Regional Map from K��tter and Wanke (2005), Paxinos Rhesus Monkey (2000) * Macaque: The NeuroMaps Macaque atlas (2008) * Mouse: The INCF Waxholm Space for the mouse (2011). Previous versions available. * Mouse: The Allen Mouse Brain volumetric atlas (ABA07) * Human: The LPBA40 parcellation, registered to SRI24 space A variety of services are being developed around the templates contained in the Scalable Brain Atlas. For example, you can include thumbnails of brain regions in your own webpage. Other applications include: * Analyze atlas templates in Matlab * List all regions belonging to the given template * List of supported atlas templates * Find region by coordinate * Color-coded PNG (bitmap) or SVG (vector) image of a brain atlas slice * Region thumbnail in 2D (slice) or 3D (stack of slices) The Scalable Brain Atlas is created by Rembrandt Bakker and Gleb Bezgin, under supervision of Rolf K��tter in the NeuroPhysiology and -Informatics group of the Donders Institute, Radboud UMC Nijmegen.
Proper citation: Scalable Brain Atlas (RRID:SCR_006934) Copy
http://bric.unc.edu/ideagroup/free-softwares/ABSORB/
This software package implements an algorithm for effective groupwise registration. The required input is a set of 3D MR intensity images (in Analyze format with paired .hdr and .img files) with a text file (.txt) listing all header file (.hdr) names. The output is the set of registered images together with the corresponding dense deformation fields. This software has been tested on Windows XP (32-bit) and Linux (64-bit, kernel version 2.6.18-194.el5). The images should be pre-processed before applying ABSORB: * All brain MR images used as inputs to ABSORB should be in the same situation (e.g., skull-stripped or not, cerebellum removed or not, etc.). * The input images should be in Analyze format with paired header and image files. This software was developed in IDEA group in UNC-Chapel Hill.
Proper citation: ABSORB: Atlas Building by Self-Organized Registration and Bundling (RRID:SCR_007018) Copy
http://www.cns.atr.jp/dni/en/downloads/tools-for-brain-behavior-data-sharing/
This is MATLAB library to create Neuroshare data format. You can convert your own data into Neuroshare format file.
Proper citation: Matlab Neuroshare Library (RRID:SCR_006957) Copy
https://itunes.apple.com/gb/app/neuropub-visualizer/id405721542?mt=8
A NIfTI visualizer for statistical brain images (fMRI, VBM, etc) the iPad. The visualizer displays these images as overlay on the MNI standard brain. You can use it to store all your statistical images from your fMRI / VBM / TBSS studies and visualise them in 2D and 3D. Use NeuroPub as a library for your statistical images. It's the perfect app to bring to meetings, conferences, etc, and show your latest results.
Proper citation: NeuroPub Visualizer (RRID:SCR_006797) Copy
https://www.nitrc.org/projects/fmridatacenter/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 25, 2013 Public curated repository of peer reviewed fMRI studies and their underlying data. This Web-accessible database has data mining capabilities and the means to deliver requested data to the user (via Web, CD, or digital tape). Datasets available: 107 NOTE: The fMRIDC is down temporarily while it moves to a new home at UCLA. Check back again in late Jan 2013! The goal of the Center is to help speed the progress and the understanding of cognitive processes and the neural substrates that underlie them by: * Providing a publicly accessible repository of peer-reviewed fMRI studies. * Providing all data necessary to interpret, analyze, and replicate these fMRI studies. * Provide training for both the academic and professional communities. The Center will accept data from those researchers who are publishing fMRI imaging articles in peer-reviewed journals. The goal is to serve the entire fMRI community.
Proper citation: fMRI Data Center (RRID:SCR_007278) Copy
National genetics data repository facilitating access to genotypic and phenotypic data for Alzheimer's disease (AD). Data include GWAS, whole genome (WGS) and whole exome (WES), expression, RNA Seq, and CHIP Seq analyses. Data for the Alzheimer’s Disease Sequencing Project (ADSP) are available through a partnership with dbGaP (ADSP at dbGaP). Repository for many types of data generated from NIA supported grants and/or NIA funded biological samples. Data are deposited at NIAGADS or NIA-approved sites. Genetic Data and associated Phenotypic Data are available to qualified investigators in scientific community for secondary analysis.
Proper citation: National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) (RRID:SCR_007314) Copy
http://www.neuroconstruct.org/
Software for simulating complex networks of biologically realistic neurons, i.e. models incorporating dendritic morphologies and realistic cell membrane conductance, implemented in Java and generates script files for the NEURON and GENESIS simulators, with support for other simulation platforms (including PSICS and PyNN) in development. neuroConstruct is being developed in the Silver Lab in the Department of Neuroscience, Physiology and Pharmacology at UCL and uses the latest NeuroML specifications, including MorphML, ChannelML and NetworkML. Some of the key features of neuroConstruct are: Creation of networks of biologically realistic neurons, positioned in 3D space. Complex connectivity patterns between cell groups can be specified for the networks. Can import morphology files in GENESIS, NEURON, Neurolucida, SWC and MorphML format for inclusion in network models. Simulations can be run on the NEURON or GENESIS platforms. Cellular processes (synapses/channel mechanisms) can be imported from native script files or created in ChannelML. Recording of simulation data generated by the simulation and visualization/analysis of data. Stored simulation runs can be viewed and managed through the Simulation Browser interface.
Proper citation: neuroConstruct (RRID:SCR_007197) Copy
http://www.bmu.psychiatry.cam.ac.uk/software/
Suite of programs developed for fMRI analysis in a Virtual Pipeline Laboratory facilitates combining program modules from different software packages into processing pipelines to create analysis solutions which are not possible with a single software package alone. Current pipelines include fMRI analysis, statistical testing based on randomization methods and fractal spectral analysis. Pipelines are continually being added. The software is mostly written in C. This fMRI analysis package supports batch processing and comprises the following general functions at the first level of individual image analysis: movement correction (interpolation and regression), time series modeling, data resampling in the wavelet domain, hypothesis testing at voxel and cluster levels. Additionally, there is code for second level analysis - group and factorial or ANOVA mapping - after co-registration of voxel statistic maps from individual images in a standard space. The main point of difference from other fMRI analysis packages is the emphasis throughout on the use of data resampling (permutation or randomization) as a basis for inference on individual, group and factorial test statistics at voxel and cluster levels of resolution.
Proper citation: Cambridge Brain Activation (RRID:SCR_007109) Copy
http://www.neurolens.org/NeuroLens/
An integrated environment for the analysis and visualization of functional neuroimages. It is intended to provide extremely fast and flexible image processing, via an intuitive user interface that encourages experimentation with analysis parameters and detailed inspection of both raw image data and processing results. All processing operations in NeuroLens are built around a Plugin architecture, making it easy to extend its functionality. NeuroLens runs on Apple computers based on the G4, G5, or Intel chipsets and running MacOSX 10.4 (Tiger) or later. It is available free for academic and non-profit research use. * Operating System: MacOS * Programming Language: Objective C * Supported Data Format: AFNI BRIK, ANALYZE, COR, DICOM, MGH/MGZ, MINC, Other Format
Proper citation: NeuroLens (RRID:SCR_007372) Copy
http://biosig.sourceforge.net/
Software library for processing of electroencephalogram (EEG) and other biomedical signals like electroencephalogram (EEG), electrocorticogram (ECoG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), respiration, and so on. Biosig contains tools for quality control, artifact processing, time series analysis, feature extraction, classification and machine learning, and tools for statistical analysis. Many tools are able to handle data with missing values (statistics, time series analysis, machine learning). Another feature is that more then 40 different data formats are supported, and a number of converters for EEG,, ECG and polysomnography are provided. Biosig has been widely used for scientific research on EEG-based BraiN-Computer Interfaces (BCI), sleep research, and ECG and HRV analysis. It provides software interfaces several programming languages (C, C++, Matlab/Octave, Python), and it provides also an interactive viewing and scoring software for adding, and editing of annotations, markers and events.
Proper citation: BioSig: An Imaging Bioinformatics System for Phenotypic Analysis (RRID:SCR_008428) Copy
http://www.nitrc.org/projects/sreps/
Software to fit s-reps to segmented anatomic objects, to compute probability distributions on these s-reps, to train and to apply classifiers between two classes of anatomic objects, and to apply hypothesis testing to determine which geometric or physiological features vary significantly between two classes. Software for object segmentation from medical images may also be included. S-reps are skeletal models for anatomic objects especially suited for computing probability distributions from populations of these objects and for providing object-related coordinates for the interior of these objects. They allow classification and hypothesis testing using their geometric features and physiological features derived from medical images. They also allow the definition of shape spaces, probability-based geometric typicality functions, and appearance models used for segmentation or registration. A variety of successful applications to objects in neuroimages have already been performed.
Proper citation: S-rep Fitting Statistics and Segmentation (RRID:SCR_002540) Copy
http://scralyze.sourceforge.net
A powerful software for model-based analysis of peripheral psychophysiology (e.g. skin conductance, heart rate, pupil size etc.). General linear modelling and dynamic causal modelling of these signals provide for inference on neural states/processes. SCRalyze includes flexible data import and display, statistical inference and results display and export. Easy programming of add-ons for new data formats, signal channels, and models.
Proper citation: SCRalyze (RRID:SCR_002542) Copy
http://www.nitrc.org/projects/ontology/
Project to discuss, debate, develop and deploy ontological practices for the fMRI community.
Proper citation: Resource Ontology Discussion Group (RRID:SCR_002536) Copy
http://omlc.ogi.edu/software/mc/
MCML is a Monte Carlo simulation program for Multi-layered Turbid Media with an infinitely narrow photon beam as the light source. The simulation is specified by an input text file called, for example, sample.mci, which can be modified by any simple text editor. The output is another text file called, for example, sample.mco. (The names are arbitrary.) CONV is a convolution program which uses the MCML output file to convolve for photon beams of any size in a Gaussian or flat field shape. CONV can provide a variety of output formats (reflectance, transmission, iso-fluence contours, etc.), which are compatible with standard graphics applications.
Proper citation: MCML and CONV (RRID:SCR_002419) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.