Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://github.com/mskcc/lohhla
Software tool to evaluate HLA loss using next-generation sequencing data. Computational tool to determine HLA allele-specific copy number from sequencing data.
Proper citation: LOHHLA (RRID:SCR_023690) Copy
http://www.roslin.ed.ac.uk/about-roslin/
The world''s largest collection of tick cell lines, enabling scientists to carry out advanced research. This biobank is establishing a collection of all the continuous cell lines derived from ixodid and argasid ticks of medical and veterinary importance available worldwide now and in future. Ticks are blood feeding arthropods which transmit many human and animal diseases. Research into prevention and cure of these diseases, which are caused by viruses, bacteria and protozoa, is greatly assisted by the use of cell culture systems which enable study of both how tick cells function, and how and why ticks transmit these disease-causing pathogens. Cell lines will always be shipped to recipient laboratories as growing cultures, since we cannot guarantee successful resuscitation of frozen stabilates. Tick cells in culture can tolerate the range of temperatures experienced during transit by air for up to a week. Training: We will provide training in tick cell line care and maintenance. This is an essential component of successful transfer of tick cells to, and their establishment in, laboratories with little or no previous experience of tick cell culture. Recipient scientists (preferably the person who will actually look after the cells) can visit the biobank for between 2 days and 2 weeks, depending on their level of previous experience, to be trained in the specific approach and methods for tick cell cultivation. Establishment of new cell lines: In response to requests and on receipt of suitable starting material (engorged female or moulting nymphal ticks), we will attempt to establish new cell lines from tick species or strains which are not already represented in the collection. Deposition of new tick cell lines: We invite researchers anywhere in the world who have established new tick cell lines to deposit samples for safekeeping free of charge and, if requested, for distribution alongside the existing biobank portfolio.
Proper citation: Roslin Wellcome Trust Tick Cell Biobank (RRID:SCR_004228) Copy
http://www.sanger.ac.uk/science/tools/alien-hunter
Software for the prediction of putative Horizontal Gene Transfer (HGT) events with the implementation of Interpolated Variable Order Motifs (IVOMs). The predictions (embl format) can be automatically loaded into Artemis genome viewer.
Proper citation: Alien-hunter (RRID:SCR_015967) Copy
Software package for quantitative analysis of large Fluorescence Lifetime Imaging Microscopy (FLIM) data, including global analysis. It is able to routinely analyse multi-well plate FLIM datasets on conventional PC workstations in a reasonable time., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: FLIMfit (RRID:SCR_016298) Copy
https://www.sanger.ac.uk/science/tools/reapr
Software tool to identify errors in genome assemblies without need for reference sequence. Can be used in any stage of assembly pipeline to automatically break incorrect scaffolds and flag other errors in assembly for manual inspection. Reports mis-assemblies and other warnings, and produces new broken assembly based on error calls.
Proper citation: Recognition of Errors in Assemblies using Paired Reads (RRID:SCR_017625) Copy
Software toolbox for quantitative MRI in neuroscience and clinical research. Open source and flexible tool for qMRI data handling and processing. Allows estimation of high quality multi parameter qMRI maps followed by spatial registration in common space for statistical analysis.
Proper citation: hMRI-toolbox (RRID:SCR_017682) Copy
https://www2.mrc-lmb.cam.ac.uk/groups/murshudov/content/balbes/balbes_layout.html
Software system for solving protein structures using x-ray crystallographic data. Automatic molecular replacement pipeline for molecular replacement in CCP4. Integrates into one system all components necessary for solving crystal structure by Molecular Replacement. System is automated so that it needs no user intervention when running combination of jobs such as model searching, molecular replacement and refinement.
Proper citation: BALBES (RRID:SCR_018763) Copy
A not for profit organization to accelerate research into aging by sharing resources: providing access to cost and time effective, aged murine tissue through a biorepository and database of live ageing colonies, as well as promoting the networking of researchers and dissemination of knowledge through its online collaborative environment; MiCEPACE. ShARM will provide valuable resources for the scientific community while helping to reduce the number of animals used in vital research into aging. The biobank of tissue and networking facility will enable scientists to access shared research material and data. By making use of collective resources, the number of individual animals required in research experiments can be minimized. The project also has the added value of helping to reduce the costs of research by connecting scientists, pooling resource and combining knowledge. ShARM works in partnership with MRC Harwell and the Centre for Intergrated Research into Musculoskeletal Ageing (CIMA).
Proper citation: ShARM (RRID:SCR_003120) Copy
https://github.com/c-zhou/yahs
Software command line tool for construction of chromosome scale scaffolds from Hi-C data. Scaffolding tool using Hi-C or Omni-C data. Used to scaffold contig level assemblies into chromosome scale scaffolded assemblies.
Proper citation: YaHS (RRID:SCR_022965) Copy
https://github.com/santeripuranen/SpydrPick
Software command line tool for performing direct coupling analysis of aligned categorical datasets. Used for analysis at scale of pan genomes of many bacteria. Incorporates correction for population structure, which adjusts for phylogenetic signal in data without requiring explicit phylogenetic tree.
Proper citation: SpydrPick (RRID:SCR_018176) Copy
https://github.com/santeripuranen/SuperDCA
Software tool for global direct coupling analysis of input genome alignments. Implements variant of pseudolikelihood maximization direct coupling analysis, with emphasis on optimizations that enable its use on genome scale. May be used to discover co evolving pairs of loci.Used for genome wide epistasis analysis.
Proper citation: SuperDCA (RRID:SCR_018175) Copy
https://vertebrate.genenames.org/
Software resource for vertebrate gene nomenclature. Database of gene symbols. Coordinates with vertebrate nomenclature committees, MGNC (mouse), RGNC (rat), CGNC (chicken), AGNC (Anole green lizard), XNC (Xenopus frog) and ZNC (zebrafish), to ensure genes are named in line with their human homologs.
Proper citation: VGNC (RRID:SCR_017514) Copy
A UK national induced pluripotent stem (iPS) cell resource that will create and characterize more than 1000 human iPSCs from healthy and diseased tissue for use in cellular genetic studies. Between 2013 and 2016 they aim to generate iPS cells from over 500 healthy individuals and 500 individuals with genetic disease. They will then use these cells to discover how genomic variation impacts on cellular phenotype and identify new disease mechanisms. Strong links with NHS investigators will ensure that studies on the disease-associated cell lines will be linked to extensive clinical information. Further key features of the project are an open access model of data sharing; engagement of the wider clinical genetics community in selecting patient samples; and provision of dedicated laboratory space for collaborative cell phenotyping and differentiation.
Proper citation: HipSci (RRID:SCR_003909) Copy
http://www.sanger.ac.uk/mouseportal/
Database of mouse research resources at Sanger: BACs, targeting vectors, targeted ES cells, mutant mouse lines, and phenotypic data generated from the Institute''''s primary screen. The Wellcome Trust Sanger Institute generates, characterizes, and uses a variety of reagents for mouse genetics research. It also aims to facilitate the distribution of these resources to the external scientific community. Here, you will find unified access to the different resources available from the Institute or its collaborators. The resources include: 129S7 and C57BL6/J bacterial artificial chromosomes (BACs), MICER gene targeting vectors, knock-out first conditional-ready gene targeting vectors, embryonic stem (ES) cells with gene targeted mutations or with retroviral gene trap insertions, mutant mouse lines, and phenotypic data generated from the Institute''''s primary screen.
Proper citation: Sanger Mouse Resources Portal (RRID:SCR_006239) Copy
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS
Software tool to improve sensitivity, objectivity and interpretability of analysis of multi-subject diffusion imaging studies.
Proper citation: Tract Based Spatial Statistics (RRID:SCR_024932) Copy
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT
Software command line tool for automated tractography. Standardised protocols for automated tractography in human and macaque brain.
Proper citation: XTRACT (RRID:SCR_024933) Copy
https://tristanic.github.io/isolde/
Software environment to ease task of building macromolecular models into low to medium resolution experimental maps. Physically realistic environment for model building into low-resolution electron-density maps. Can generate maps directly from crystallographic F/sigF data in MTZ format and automatically re-calculate them when model changes, and/or generate "static" maps from pre-calculated F/phi data.
Proper citation: ISOLDE (RRID:SCR_025577) Copy
Facility provides diverse range of equipment, expertise and training in field of biochemistry, molecular, structural and cellular biology. Facility consists of several research laboratories and support areas.
Proper citation: University College London Darwin Research Core Facility (RRID:SCR_026345) Copy
https://github.com/aametwally/Metabolic_Subphenotype_Predictor
Software repository contains code for Inference of T2D metabolic subphenotypes (MuscleIR, Beta-cell Function, Incretin Effect, Hepatic IR), Identification of dominant metabolic subphenotype, Feature extraction from glucose tiemseries, Extraction of reduced representation of glucose tiemseries,Visualization of metabolic phenotypes based on various glucose-related metrics,Concordance between CGM and Venous glucose values from at home and at clinical setting, Classification of metabolic subphenotypes.
Proper citation: Metabolic Subphenotype Predictor (RRID:SCR_027192) Copy
https://github.com/wheaton5/souporcell
Software tool to cluster cells using the genetic variants detected within the scRNAseq reads. Robust clustering of single-cell RNA-seq data by genotype without reference genotypes. Used for clustering scRNAseq by genotypes.
Proper citation: Souporcell (RRID:SCR_027462) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.