Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 469 results
Snippet view Table view Download 469 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_022011

    This resource has 10+ mentions.

https://github.com/mourisl/Rcorrector

Software tool as kmer based error correction method for RNAseq data. Can also be applied to other types of sequencing data where read coverage is nonuniform, such as single cell sequencing. Used for error correction for Illumina RNAseq reads.

Proper citation: Rcorrector (RRID:SCR_022011) Copy   


  • RRID:SCR_022193

    This resource has 100+ mentions.

https://github.com/Benson-Genomics-Lab/TRF

Software tool to locate and display tandem repeats in DNA sequences. Program to analyze DNA sequences.

Proper citation: Tandem Repeats Finder (RRID:SCR_022193) Copy   


  • RRID:SCR_022194

    This resource has 10+ mentions.

https://github.com/marbl/MashMap

Software tool as fast approximate aligner for long DNA sequences. Used for computing local alignment boundaries between long DNA sequences.

Proper citation: MashMap (RRID:SCR_022194) Copy   


http://hymao.org

A structured controlled vocabulary of the anatomy of the Hymenoptera (bees, wasps, sawflies and ants)

Proper citation: Hymenoptera Anatomy Ontology (RRID:SCR_003340) Copy   


http://www.geosamples.org/

Sample Catalog and Registry for the International Geo Sample Number. SESAR catalogs and preserves sample metadata profiles, and provides access to the sample catalog via the Global Sample Search.

Proper citation: System for Earth Sample Registration (RRID:SCR_002222) Copy   


http://nsidc.org/agdc/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 2, 2025. Archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program. The Data Catalog contains data sets collected by individual investigators and products assembled from many different PI data sets, published literature, and other sources. The catalog provides useful compilations of important geophysical parameters, such as accumulation rate or ice velocity. The NSF OPP Guidelines and Award Conditions for Scientific Data state that PIs should submit data collected as a result of their OPP grant to a designated data center as soon as possible, but no later than two years after the data are collected.

Proper citation: Antarctic Glaciological Data Center (RRID:SCR_002219) Copy   


  • RRID:SCR_003147

    This resource has 10+ mentions.

http://www.morphbank.net/

An NSF supported image repository of over 374,000 high-resolution photographs of approximately 4,000 species for research and education, used largely but not exclusively in the area of biodiversity research. Images can be annotated by users and browsed by specimen, view, taxonomy, location, collection, or annotation.

Proper citation: MorphBank (RRID:SCR_003147) Copy   


  • RRID:SCR_005398

    This resource has 10+ mentions.

http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi

Database of all of the publicly available, complete prokaryotic genomes. In addition to having all of the organisms on a single website, common data types across all genomes in the CMR make searches more meaningful, and cross genome analysis highlight differences and similarities between the genomes. CMR offers a wide variety of tools and resources, all of which are available off of our menu bar at the top of each page. Below is an explanation and link for each of these menu options. * Genome Tools: Find organism lists as well as summary information and analyses for selected genomes. * Searches: Search CMR for genes, genomes, sequence regions, and evidence. * Comparative Tools: Compare multiple genomes based on a variety of criteria, including sequence homology and gene attributes. SNP data is also found under this menu. * Lists: Select and download gene, evidence, and genomic element lists. * Downloads: Download gene sequences or attributes for CMR organisms, or go to our FTP site. * Carts: Select genome preferences from our Genome Cart or download your Gene Cart genes. The Omniome is the relational database underlying the CMR and it holds all of the annotation for each of the CMR genomes, including DNA sequences, proteins, RNA genes and many other types of features. Associated with each of these DNA features in the Omniome are the feature coordinates, nucleotide and protein sequences (where appropriate), and the DNA molecule and organism with which the feature is associated. Also available are evidence types associated with annotation such as HMMs, BLAST, InterPro, COG, and Prosite, as well as individual gene attributes. In addition, the database stores identifiers from other centers such as GenBank and SwissProt, as well as manually curated information on each genome or each DNA molecule including website links. Also stored in the Omniome are precomputed homology data, called All vs All searches, used throughout the CMR for comparative analysis.

Proper citation: JCVI CMR (RRID:SCR_005398) Copy   


  • RRID:SCR_005848

http://www.ibioseminars.org/

iBioSeminars offers: * Free, on-demand lectures: Many universities/colleges have limited access to high profile leaders in biological research. Our goal is to add 15-20 seminars per year, of similar quality to outstanding lectures that are currently in this library. Access, through web streaming or download, is completely free-of-charge. * Targeting a broad audience: iBioSeminars start with an extended introduction, making them accessible to non-specialists and students, and then progress to cover current research. Senior scientists and students can view and enjoy these lectures. * Education: iBioSeminars are being used by undergraduate and graduate teachers to augment their classroom material. We have now added an education component to this web site (including lecture notes, questions/answers and short video clips for teaching). * International communication: iBioSeminars have viewers in 115 countries and they are being internally promoted in several countries as an educational tool and scientific resource. * Goodwill: Lecturers generously donate their time to prepare these lectures. The project, largely funded by HHMI, is a grass roots efforts with time invested by several individuals at UCSF, HHMI and ASCB.

Proper citation: iBioSeminars (RRID:SCR_005848) Copy   


  • RRID:SCR_005688

    This resource has 500+ mentions.

http://treebase.org/treebase-web/

Repository of phylogenetic information, specifically user-submitted phylogenetic trees and the data used to generate them. TreeBASE accepts all kinds of phylogenetic data (e.g., trees of species, trees of populations, trees of genes) representing all biotic taxa. Data in TreeBASE are exposed to the public if they are used in a publication that is in press or published in a peer-reviewed scientific journal, book, conference proceedings, or thesis. Data used in publications that are in preparation or in review can be submitted to TreeBASE but will not be available to the public until they have passed peer review.

Proper citation: TreeBASE (RRID:SCR_005688) Copy   


  • RRID:SCR_004905

    This resource has 1+ mentions.

http://vmd.vbi.vt.edu/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. Database covering a range of plant pathogenic oomycetes, fungi and bacteria primarily those under study at Virginia Bioinformatics Institute. The data comes from different sources and has genomes of 3 oomycetes pathogens: Phytophthora sojae, Phytophthora ramorum and Hyaloperonospora arabidopsidis. The genome sequences (95 MB for P.sojae and 65 MB for P.ramorum) were annotated with approximately 19,000 and approximately 16,000 gene models, respectively. Two different statistical methods were used to validate these gene models, Fickett''''s and a log-likelihood method. Functional annotation of the gene models is based on results from BlastX and InterProScan screens. From the InterProScan results, putative functions to 17,694 genes in P.sojae and 14,700 genes in P.ramorum could be assigned. An easy-to-use genome browser was created to view the genome sequence data, which opens to detailed annotation pages for each gene model. A community annotation interface is available for registered community members to add or edit annotations. There are approximately 1600 gene models for P.sojae and approximately 700 models for P.ramorum that have already been manually curated. A toolkit is provided as an additional resource for users to perform a variety of sequence analysis jobs.

Proper citation: VMD (RRID:SCR_004905) Copy   


http://www.plexdb.org/index.php

PLEXdb (Plant Expression Database) is a unified gene expression resource for plants and plant pathogens. PLEXdb is a genotype to phenotype, hypothesis building information warehouse, leveraging highly parallel expression data with seamless portals to related genetic, physical, and pathway data. The integrated tools of PLEXdb allow investigators to use commonalities in plant biology for a comparative approach to functional genomics through use of large-scale expression profiling data sets.

Proper citation: PLEXdb - Plant Expression Database (RRID:SCR_006963) Copy   


http://www.digitalfishlibrary.org/index.php

A database of 3D magnetic resonance (MRI) images of fish accessible to scientists, educators and the general public via the web. The Marine Vertebrate Collection at the Scripps Institution of Oceanography provides the majority of the DFL specimens.

Proper citation: Digital Fish Library (RRID:SCR_008338) Copy   


http://magi.cs.brown.edu/

A tool for annotating, exploring, and analyzing gene sets that may be associated with cancer.

Proper citation: Mutation Annotation and Genomic Interpretation (RRID:SCR_002800) Copy   


  • RRID:SCR_002821

    This resource has 10+ mentions.

http://kb.phenoscape.org/

Knowledgebase that uses ontologies to integrate phenotypic data from genetic studies of zebrafish with evolutionary variable phenotypes from the systematic literature of ostariophysan fishes. Users can explore the data by searching for anatomical terms, taxa, or gene names. The expert system enables the broad scale analysis of phenotypic variation across taxa and the co-analysis of these evolutionarily variable features with the phenotypic mutants of model organisms. The Knowledgebase currently contains 565,158 phenotype statements about 2,527 taxa, sourced from 57 publications, as well as 38,189 phenotype statements about 4,727 genes, retrieved from ZFIN. 2013-01-26.

Proper citation: Phenoscape Knowledgebase (RRID:SCR_002821) Copy   


http://www.mitomap.org/

Database of polymorphisms and mutations of the human mitochondrial DNA. It reports published and unpublished data on human mitochondrial DNA variation. All data is curated by hand. If you would like to submit published articles to be included in mitomap, please send them the citation and a pdf.

Proper citation: MITOMAP - A human mitochondrial genome database (RRID:SCR_002996) Copy   


  • RRID:SCR_003255

    This resource has 10+ mentions.

http://ndbserver.rutgers.edu/

A database of three-dimensional structural information about nucleic acids and their complexes. In addition to primary data, it contains derived geometric data, classifications of structures and motifs, standards for describing nucleic acid features, as well as tools and software for the analysis of nucleic acids. A variety of search capabilities are available, as are many different types of reports. NDB maintains the macromolecular Crystallographic Information File (mmCIF).

Proper citation: Nucleic Acid Database (RRID:SCR_003255) Copy   


  • RRID:SCR_004182

    This resource has 1+ mentions.

http://avis.princeton.edu/pixie/index.php

bioPIXIE is a general system for discovery of biological networks through integration of diverse genome-wide functional data. This novel system for biological data integration and visualization, allows you to discover interaction networks and pathways in which your gene(s) (e.g. BNI1, YFL039C) of interest participate. The system is based on a Bayesian algorithm for identification of biological networks based on integrated diverse genomic data. To start using bioPIXIE, enter your genes of interest into the search box. You can use ORF names or aliases. If you enter multiple genes, they can be separated by commas or returns. Press ''submit''. bioPIXIE uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the bioPIXIE algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. As you move the mouse over genes in the network, interactions involving these genes are highlighted. If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed. You may need to download the Adobe Scalable Vector Graphic (SVG) plugin to utilize the visualization tool (you will be prompted if you need it).

Proper citation: bioPIXIE (RRID:SCR_004182) Copy   


http://bioinfo.mbi.ucla.edu/ASAP/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on 8/12/13. Database to access and mine alternative splicing information coming from genomics and proteomics based on genome-wide analyses of alternative splicing in human (30 793 alternative splice relationships found) from detailed alignment of expressed sequences onto the genomic sequence. ASAP provides precise gene exon-intron structure, alternative splicing, tissue specificity of alternative splice forms, and protein isoform sequences resulting from alternative splicing. They developed an automated method for discovering human tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs), which involves classifying human EST libraries according to tissue categories and Bayesian statistical analysis. They use the UniGene clusters of human Expressed Sequence Tags (ESTs) to identify splices. The UniGene EST's are clustered so that a single cluster roughly corresponds to a gene (or at least a part of a gene). A single EST represents a portion of a processed (already spliced) mRNA. A given cluster contains many ESTs, each representing an outcome of a series of splicing events. The ESTs in UniGene contain the different mRNA isoforms transcribed from an alternatively spliced gene. They are not predicting alternative splicing, but locating it based on EST analysis. The discovered splices are further analyzed to determine alternative splicing events. They have identified 6201 alternative splice relationships in human genes, through a genome-wide analysis of expressed sequence tags (ESTs). Starting with 2.1 million human mRNA and EST sequences, they mapped expressed sequences onto the draft human genome sequence and only accepted splices that obeyed the standard splice site consensus. After constructing a tissue list of 46 human tissues with 2 million human ESTs, they generated a database of novel human alternative splices that is four times larger than our previous report, and used Bayesian statistics to compare the relative abundance of every pair of alternative splices in these tissues. Using several statistical criteria for tissue specificity, they have identified 667 tissue-specific alternative splicing relationships and analyzed their distribution in human tissues. They have validated our results by comparison with independent studies. This genome-wide analysis of tissue specificity of alternative splicing will provide a useful resource to study the tissue-specific functions of transcripts and the association of tissue-specific variants with human diseases.

Proper citation: ASAP: the Alternative Splicing Annotation Project (RRID:SCR_003415) Copy   


  • RRID:SCR_004933

    This resource has 500+ mentions.

http://solgenomics.net/

A clade oriented, community curated database containing genomic, genetic, phenotypic and taxonomic information for plant genomes. Genomic information is presented in a comparative format and tied to important plant model species such as Arabidopsis. SGN provides tools such as: BLAST searches, the SolCyc biochemical pathways database, a CAPS experiment designer, an intron detection tool, an advanced Alignment Analyzer, and a browser for phylogenetic trees. The SGN code and database are developed as an open source project, and is based on database schemas developed by the GMOD project and SGN-specific extensions.

Proper citation: SGN (RRID:SCR_004933) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SPARC Anatomical Working Group Resources

    Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within SPARC SAWG that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X