Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 240 results
Snippet view Table view Download 240 Result(s)
Click the to add this resource to a Collection

http://www.ouhsc.edu/compmed/documents/DevelopmentofaSpecificPathogenFreeBaboonColony.pdf

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 4th,2023. Program developing a self-sustaining colony of baboons free of all known herpesviruses, four retroviruses, and SV40 for research. When the program is fully developed, they will provide healthy, behaviorally normal, SPF baboons that are free of all known herpes viruses, four retroviruses, and SV40. To accomplish this goal, the center has established in collaboration with co-investigators and consultants serological and PCR tests for each of the 11 target viruses. These baboon viruses include six herpesviruses (analogs of human HSV, VZV, CMV, HHV6, EBV, and HHV8), four retroviruses (simian foamy virus, SRV/D, SIV, and STLV), and SV40. Twenty-four infant baboons are being recruited into the SPF program in each of the first five years, for a final total of at least 66 SPF baboons. All infants will be repeatedly tested for each of the target viruses. At one month of age, larger social groups of 4-6 SPF animals are formed. Beginning at 2-3 years of age, SPF animals will be integrated into larger socially compatible groups. These groups will eventually mature into breeding harems of SPF animals. This approach provides infants with age-matched companions for socialization during their early period of development, minimizes opportunities for transmission of viruses to the infants from adult animals, and allows for the simultaneous elimination of many different viruses from SPF animals.

Proper citation: Development of a Specific-Pathogen-Free Baboon Colony (RRID:SCR_002900) Copy   


  • RRID:SCR_003142

    This resource has 10+ mentions.

http://braininfo.rprc.washington.edu

Portal to neuroanatomical information on the Web that helps you identify structures in the brain and provides a variety of information about each structure by porting you to the best of 1500 web pages at 100 other neuroscience sites. BrainInfo consists of three basic components: NeuroNames, a developing database of definitions of neuroanatomic structures in four species, their most common acronyms and their names in eight languages; NeuroMaps, a digital atlas system based on 3-D canonical stereotaxic atlases of rhesus macaque and mouse brains and programs that enable one to map data to standard surface and cross-sectional views of the brains for presentation and publication; and the NeuroMaps precursor: Template Atlas of the Primate Brain, a 2-D stereotaxic atlas of the longtailed (fascicularis) macaque brain that shows the locations of some 250 architectonic areas of macaque cortex. The NeuroMaps atlases will soon include a number of overlays showing the locations of cortical areas and other neuroscientific data in the standard frameworks of the macaque and mouse atlases. Viewers are encouraged to use NeuroNames as a stable source of unique standard terms and acronyms for brain structures in publications, illustrations and indexing systems; to use templates extracted from the NeuroMaps macaque and mouse brain atlases for presenting neuroscientific information in image format; and to use the Template Atlas for warping to MRIs or PET scans of the macaque brain to estimate the stereotaxic locations of structures.

Proper citation: BrainInfo (RRID:SCR_003142) Copy   


  • RRID:SCR_001847

    This resource has 10000+ mentions.

http://surfer.nmr.mgh.harvard.edu/

Open source software suite for processing and analyzing human brain MRI images. Used for reconstruction of brain cortical surface from structural MRI data, and overlay of functional MRI data onto reconstructed surface. Contains automatic structural imaging stream for processing cross sectional and longitudinal data. Provides anatomical analysis tools, including: representation of cortical surface between white and gray matter, representation of the pial surface, segmentation of white matter from rest of brain, skull stripping, B1 bias field correction, nonlinear registration of cortical surface of individual with stereotaxic atlas, labeling of regions of cortical surface, statistical analysis of group morphometry differences, and labeling of subcortical brain structures.Operating System: Linux, macOS.

Proper citation: FreeSurfer (RRID:SCR_001847) Copy   


  • RRID:SCR_002388

    This resource has 100+ mentions.

http://www.genenetwork.org/

Web platform that provides access to data and tools to study complex networks of genes, molecules, and higher order gene function and phenotypes. Sequence data (SNPs) and transcriptome data sets (expression genetic or eQTL data sets). Quantitative trait locus (QTL) mapping module that is built into GN is optimized for fast on-line analysis of traits that are controlled by combinations of gene variants and environmental factors. Used to study humans, mice (BXD, AXB, LXS, etc.), rats (HXB), Drosophila, and plant species (barley and Arabidopsis). Users are welcome to enter their own private data.

Proper citation: GeneNetwork (RRID:SCR_002388) Copy   


https://cnprc.ucdavis.edu/

Center for investigators studying human health and disease, offering the opportunity to assess the causes of disease, and new treatment methods in nonhuman primate models that closely recapitulate humans. Its mission is to provide interdisciplinary programs in biomedical research on significant human health-related problems in which nonhuman primates are the models of choice.

Proper citation: California National Primate Research Center (RRID:SCR_006426) Copy   


  • RRID:SCR_006831

    This resource has 1+ mentions.

http://www.autopack.org/

A specialized version of autoPack designed to pack biological components together. The current version is optimized to pack molecules into cells with biologically relevant interactions to populate massive cell models with atomic or near-atomic details. Components of the algorithm pack transmembrane proteins and lipids into bilayers, globular molecules into compartments defined by the bilayers (or as exteriors), and fibrous components like microtubules, actin, and DNA.

Proper citation: Cellpack (RRID:SCR_006831) Copy   


  • RRID:SCR_004923

    This resource has 1+ mentions.

http://www.loni.usc.edu/Software/LONI-Inspector

A Java application for reading, displaying, searching, comparing, and exporting metadata from medical image files: AFNI, ANALYZE, DICOM, ECAT, GE, Interfile, MINC, and NIFTI.

Proper citation: LONI Inspector (RRID:SCR_004923) Copy   


http://nt-salkoff.wustl.edu/portal/hgxpp001.aspx?2

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Supplies potassium channel cDNA clones in vectors suitable for functional expression and stocks of gene knockout strains. Supporting this resource base are studies showing the basic biophysical properties of the channels, studies showing the phenotypes of mutants, and information on the cell-type expression patterns of potassium channels. Studies of potassium channel cell-type expression patterns and functional properties; studies of behavioral phenotypes; generation of knockout mutants. Full-length cDNAs encoding C. elegans potassium channels in a vector suitable for functional expression in Xenopus oocytes and mammalian cell lines are available on request. Information is also provided describing the cell-type expression patterns and basic biophysical properties of potassium channels. And data on behavioral phenotypes are also available. C. elegans strains carrying knockouts of potassium channels are also generated and deposited at the C. elegans stock center at the University of Minnesota.

Proper citation: A Comprehensive Resource Base for C. elegans K+ Channels (RRID:SCR_008360) Copy   


http://www.loni.usc.edu/Software/IO_Plugins

Decoders and encoders written in Java for the AFNI, ANALYZE, DICOM, ECAT, GE, MINC, NIFTI and other neuroimaging file formats.The plugins use Java Image I/O interfaces to read and write metadata and image data and can read and write AFNI, ANALYZE 7.5, DICOM, ECAT 7.2, GE 5.0, INTERFILE (including hrrt), MINC, NIFTI, and UCLA PACS file formats. All source code is provided and usage examples are included.

Proper citation: LONI Java Image I/O Plugins (RRID:SCR_008277) Copy   


http://www.nhpreagents.org

Center that facilitates the optimal use of nonhuman primate models in biomedical research by identifying, developing, characterizing and producing reagents for monitoring or modulating immune responses. They distribute non-human primate-specific antibodies for in vitro diagnostics, as well as develop and produce primate recombinant antibodies for in vivo cell depletion or modulating immune responses.

Proper citation: Nonhuman Primate Reagent Resource (RRID:SCR_012986) Copy   


  • RRID:SCR_009586

    This resource has 100+ mentions.

http://www.nmr.mgh.harvard.edu/DOT/resources/homer2/home.htm

Software matlab scripts used for analyzing fNIRS data to obtain estimates and maps of brain activation. Graphical user interface (GUI) for visualization and analysis of functional near-infrared spectroscopy (fNIRS) data.

Proper citation: Homer2 (RRID:SCR_009586) Copy   


  • RRID:SCR_013152

    This resource has 10+ mentions.

http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula

Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.

Proper citation: TRACULA (RRID:SCR_013152) Copy   


  • RRID:SCR_015666

    This resource has 1+ mentions.

http://doa.nubic.northwestern.edu/pages/search.php

Project portal for a collaborative database aiming to provide a comprehensive annotation to human genome.It uses the computable, controlled vocabulary of Disease Ontology (DO) and NCBI Gene Reference Into Function (GeneRIF).

Proper citation: DOAF (RRID:SCR_015666) Copy   


  • RRID:SCR_014185

    This resource has 1+ mentions.

http://www.nitrc.org/projects/caworks

A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.

Proper citation: CAWorks (RRID:SCR_014185) Copy   


  • RRID:SCR_016674

https://omictools.com/tiltpicker-tool

Software tool to facilitate particle selection in single particle electron microscopy. An interactive graphical interface application designed to streamline the selection of particle pairs from tilted-pair datasets. Designed to work with existing software tools for image processing.

Proper citation: TiltPicker (RRID:SCR_016674) Copy   


  • RRID:SCR_017012

    This resource has 50+ mentions.

https://github.com/kstreet13/slingshot

Software R package for identifying and characterizing continuous developmental trajectories in single cell data. Cell lineage and pseudotime inference for single-cell transcriptomics.

Proper citation: Slingshot (RRID:SCR_017012) Copy   


http://pdbml.pdb.org/

Markup Language that provides a representation of PDB data in XML format. The description of this format is provided in XML schema of the PDB Exchange Data Dictionary. This schema is produced by direct translation of the mmCIF format PDB Exchange Data Dictionary Other data dictionaries used by the PDB have been electronically translated into XML/XSD schemas and these are also presented in the list below. * PDBML data files are provided in three forms: ** fully marked-up files, ** files without atom records ** files with a more space efficient encoding of atom records * Data files in PDBML format can be downloaded from the RCSB PDB website or by ftp. * Software tools for manipulating PDB data in XML format are available.

Proper citation: Protein Data Bank Markup Language (RRID:SCR_005085) Copy   


  • RRID:SCR_001503

    This resource has 100+ mentions.

http://toppcluster.cchmc.org/

A tool for performing multi-cluster gene functional enrichment analyses on large scale data (microarray experiments with many time-points, cell-types, tissue-types, etc.). It facilitates co-analysis of multiple gene lists and yields as output a rich functional map showing the shared and list-specific functional features. The output can be visualized in tabular, heatmap or network formats using built-in options as well as third-party software. It uses the hypergeometric test to obtain functional enrichment achieved via the gene list enrichment analysis option available in ToppGene.

Proper citation: ToppCluster (RRID:SCR_001503) Copy   


  • RRID:SCR_006141

    This resource has 10+ mentions.

http://www.pathbase.net/

Database of histopathology photomicrographs and macroscopic images derived from mutant or genetically manipulated mice. The database currently holds more than 1000 images of lesions from mutant mice and their inbred backgrounds and further images are being added continuously. Images can be retrieved by searching for specific lesions or class of lesion, by genetic locus, or by a wide set of parameters shown on the Advanced Search Interface. Its two key aims are: * To provide a searchable database of histopathology images derived from experimental manipulation of the mouse genome or experiments conducted on genetically manipulated mice. * A reference / didactic resource covering all aspects of mouse pathology Lesions are described according to the Pathbase pathology ontology developed by the Pathbase European Consortium, and are available at the site or on the Gene Ontology Consortium site - OBO. As this is a community resource, they encourage everyone to upload their own images, contribute comments to images and send them their feedback. Please feel free to use any of the SOAP/WSDL web services. (under development)

Proper citation: Pathbase (RRID:SCR_006141) Copy   


https://neuroscienceblueprint.nih.gov/Resources-Tools/Blueprint-Resources-Tools-Library

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 22, 2023. National initiative to advance biomedical research through data sharing and online collaboration that provides data sharing infrastructure, software tools, strategies and advisory services. Groups may choose whether to share data internally or with external audiences. Hardware and data remain under control of individual user groups.

Proper citation: Biomedical Informatics Research Network (RRID:SCR_005163) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SPARC Anatomical Working Group Resources

    Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within SPARC SAWG that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X