Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.loni.usc.edu/Software/jViewbox
A portable software framework for medical imaging research. jViewbox consists of a set of Java classes organized under a simple but extensive API that provides the core functionality of 2D image presentation needed by most imaging applications. It follows Java's Swing model closely to make it easy for application developers to build GUIs where end users can use various tools in a tool bar to manipulate the image displays. No optional add-ons or native code is used, which makes jViewBox compatible with any standard Java 2 Runtime Environment (version 1.3 or later).
Proper citation: jViewbox (RRID:SCR_008274) Copy
https://CRAN.R-project.org/package=gma
Software package to perform Granger mediation analysis for time series. Includes single level GMA model and two-level GMA model, for time series with hierarchically nested structure.
Proper citation: GMA (RRID:SCR_009212) Copy
A viewer for medical research images that provides analysis tools and a user interface to navigate image volumes. There are three versions of Mango, each geared for a different platform: * Mango ? Desktop ? Mac OS X, Windows, and Linux * webMango ? Browser ? Safari, Firefox, Chrome, and Internet Explorer * iMango ? Mobile ? Apple iPad Key Features: * Built-in support for DICOM, NIFTI, Analyze, and NEMA-DES formats * Customizable: Create plugins, custom filters, color tables, file formats, and atlases * ROI Editing: Threshold and component-based tools for painting and tracing ROIs * Surface Rendering: Interactive surface models supporting cut planes and overlays * Image Registration: Semi-automatic image coregistration and manual transform editing * Image Stacking: Threshold and transparency-based image overlay stacking * Analysis: Histogram, cross-section, time-series analysis, image and ROI statistics * Processing: Kernel and rank filtering, arithmetic/logic image and ROI calculators
Proper citation: Mango (RRID:SCR_009603) Copy
An infrastructure for managing of diverse computational biology resources - data, software tools and web-services. The iTools design, implementation and meta-data content reflect the broad NCBC needs and expertise (www.NCBCs.org).
Proper citation: iTools (RRID:SCR_009626) Copy
http://www.cise.ufl.edu/~abarmpou/lab/fanDTasia/
A Java applet tool for DT-MRI processing. It opens Diffusion-Weighted MRI datasets from user's computer and performs very efficient tensor field estimation using parallel threaded processing on user's browser. No installation is required. It runs on any operating system that supports Java (Windows, Mac, Linux,...). The estimated tensor field is guaranteed to be positive definite second order or higher order and is saved in user's local disc. MATLAB functions are also provided to open the tensor fields for your convenience in case you need to perform further processing. The fanDTasia Java applet provides also vector field visualization for 2nd and 4th-order tensors, as well as calculation of various anisotropic maps. Another useful feature is 3D fiber tracking (DTI-based) which is also shown using 3d graphics on the user's browser.
Proper citation: fanDTasia Java Applet: DT-MRI Processing (RRID:SCR_009624) Copy
http://www.nmr.mgh.harvard.edu/~jbm/jip/
Software toolkit for analysis of rodent and non-human primate fMRI data. The toolkit consists of binary executables, highly portable open-source c code, and image resources that enable 1) Automated registration based upon mutual information (affine, non-linear warps), with flexible control and visualization of each step; 2) visualization of 4-dimensional data using either mosaic or tri-planar display of the z/slice dimension, and integration of a general linear model for graphical display of time series analysis; 3) A simple and flexible 1st-order GLM for fMRI time series analysis, a 1st-order GLM analysis for PET data within the SRTM framework, plus a 2nd-order GLM analysis following the Worsley 2002 scheme, and 4) MRI templates to place your rodent and non-human primate data into standardized spaces.
Proper citation: JIP Analysis Toolkit (RRID:SCR_009588) Copy
An open-source MATLAB software package for imaging brain functional connectivity from electrophysiological signals. It provides interactive graphical interfaces for EEG/ECoG/MEG preprocessing, source estimation, connectivity analysis and visualization. Connectivity from EEG/ECoG/MEG can be mapped over sensor and source domains. This package is designed for use by researchers in neuroscience, psychology, cognitive science, clinical neurophysiology, neurology and other disciplines. The graphical interface-based platform requires little programming knowledge or experience with MATLAB. eConnectome is developed by the Biomedical Functional Imaging and Neuroengineering Laboratory at the University of Minnesota, directed by Dr. Bin He. The visualization module is jointly developed with Drs. Fabio Babiloni and Laura Astolfi at the University of Rome La Sapienza.
Proper citation: eConnectome (RRID:SCR_009618) Copy
http://www.columbia.edu/~dx2103/brainimagescope.html
Software package for processing diffusion tensor imaging data. The following functions are included: 1. Converting imaging data in DICOME format to ANALYZE format 2. Extracting binary brain mask for quick scalp-removing 3. Correcting eddy-current induced distortion 4. Optimized tensor estimation based on noisy diffusion-weighted imaging (DWI) data 5. Scalp removal using a brain mask image 6. Corregistering imaging data and generating deformation field for mapping images from individual spaces to a template or target space 7. Spatial Normalization and Warping DTI 8. Fiber tracking 9. Clustering fiber tracts 10. Identifying brain ventricles and generating binary masks for the baseline and DW imaging data 11. Deriving diffusion anisotropy indices (DAIs) and principal directions (PD) and the corresponding color-coded PD-map.
Proper citation: DTI BrainImageScope (RRID:SCR_009559) Copy
Project aims to change anatomy atlas by building atlases through open data, community based collaborative development, and free distribution of medical knowledge. Provides access to several 2D and 3D browser based tools.
Proper citation: Open Anatomy Project (RRID:SCR_022141) Copy
http://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases
3 atlases dedicated for neonates, 1-year-olds, and 2-year-olds. Each atlas comprises a set of 3D images made up of the intensity model, tissue probability maps, and anatomical parcellation map. These atlases are constructed with the help of state-of-the-art infant MR segmentation and groupwise registration methods, on a set of longitudinal images acquired from 95 normal infants (56 males and 39 females) at neonate, 1-year-old, and 2-year-old.
Proper citation: UNC Infant 0-1-2 Atlases (RRID:SCR_002569) Copy
Collection of dissemination and exchange recorded biomedical signals and open-source software for analyzing them. Provides facilities for cooperative analysis of data and evaluation of proposed new algorithm. Providies free electronic access to PhysioBank data and PhysioToolkit software. Offers service and training via on-line tutorials to assist users at entry and more advanced levels. In cooperation with annual Computing in Cardiology conference, PhysioNet hosts series of challenges, in which researchers and students address unsolved problems of clinical or basic scientific interest using data and software provided by PhysioNet. All data included in PhysioBank, and all software included in PhysioToolkit, are carefully reviewed. Researchers are further invited to contribute data and software for review and possible inclusion in PhysioBank and PhysioToolkit. Please review guidelines before submitting material.
Proper citation: PhysioNet (RRID:SCR_007345) Copy
http://mrir.med.miami.edu:8000/midas
Software for processing, display, and analysis of magnetic resonance spectroscopic imaging data. MIDAS supports a "whole-brain" MRSI acquisition method that has been implemented on MRI systems from three major manufacturers., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: MIDAS (RRID:SCR_015704) Copy
Visualization and analysis software for interactive visual exploration and mining of fiber-tracts and brain networks with their genetic determinants and functional outcomes. BECA includes an fMRI and Diseases Analysis version as well as a Genome Explorer version.
Proper citation: BECA (RRID:SCR_015846) Copy
Markup Language that provides a representation of PDB data in XML format. The description of this format is provided in XML schema of the PDB Exchange Data Dictionary. This schema is produced by direct translation of the mmCIF format PDB Exchange Data Dictionary Other data dictionaries used by the PDB have been electronically translated into XML/XSD schemas and these are also presented in the list below. * PDBML data files are provided in three forms: ** fully marked-up files, ** files without atom records ** files with a more space efficient encoding of atom records * Data files in PDBML format can be downloaded from the RCSB PDB website or by ftp. * Software tools for manipulating PDB data in XML format are available.
Proper citation: Protein Data Bank Markup Language (RRID:SCR_005085) Copy
A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.
Proper citation: 3D Slicer (RRID:SCR_005619) Copy
A web-based neuroimaging and neuropsychology software suite that offers versatile, automatable data upload/import/entry options, rapid and secure sharing of data among PIs, querying and export all data, real-time reporting, and HIPAA and IRB compliant study-management tools suitable to large institutions as well as smaller scale neuroscience and neuropsychology researchers. COINS manages over over 400 studies, more than 265,000 clinical neuropsychological assessments, and 26,000 MRI, EEG, and MEG scan sessions collected from 18,000 participants at over ten institutions on topics related to the brain and behavior. As neuroimaging research continues to grow, dynamic neuroinformatics systems are necessary to store, retrieve, mine and share the massive amounts of data. The Collaborative Informatics and Neuroimaging Suite (COINS) has been created to facilitate communication and cultivate a data community. This tool suite offers versatile data upload/import/entry options, rapid and secure sharing of data among PIs, querying of data types and assessments, real-time reporting, and study-management tools suitable to large institutions as well as smaller scale researchers. It manages studies and their data at the Mind Research Network, the Nathan Kline Institute, University of Colorado Boulder, the Olin Neuropsychiatry Research Center (at) Hartford Hospital, and others. COINS is dynamic and evolves as the neuroimaging field grows. COINS consists of the following collaboration-centric tools: * Subject and Study Management: MICIS (Medical Imaging Computer Information System) is a centralized PostgreSQL-based web application that implements best practices for participant enrollment and management. Research site administrators can easily create and manage studies, as well as generate reports useful for reporting to funding agencies. * Scan Data Collection: An automated DICOM receiver collects, archives, and imports imaging data into the file system and COINS, requiring no user intervention. The database also offers scan annotation and behavioral data management, radiology review event reports, and scan time billing. * Assessment Data Collection: Clinical data gathered from interviews, questionnaires, and neuropsychological tests are entered into COINS through the web application called Assessment Manager (ASMT). ASMT's intuitive design allows users to start data collection with little or no training. ASMT offers several options for data collection/entry: dual data entry, for paper assessments, the Participant Portal, an online tool that allows subjects to fill out questionnaires, and Tablet entry, an offline data entry tool. * Data Sharing: De-identified neuroimaging datasets with associated clinical-data, cognitive-data, and associated meta-data are available through the COINS Data Exchange tool. The Data Exchange is an interface that allows investigators to request and share data. It also tracks data requests and keeps an inventory of data that has already been shared between users. Once requests for data have been approved, investigators can download the data directly from COINS.
Proper citation: Mind Research Network - COINS (RRID:SCR_000805) Copy
http://www.nitrc.org/projects/tumorsim/
Simulation software that generates pathological ground truth from a healthy ground truth. The software requires an input directory that describes a healthy anatomy (anatomical probabilities, mesh, diffusion tensor image, etc) and then outputs simulation images.
Proper citation: TumorSim (RRID:SCR_002604) Copy
http://www.civm.duhs.duke.edu/neuro2012ratatlas/
Multidimensional atlas of the adult Wistar rat brain based on magnetic resonance histology (MRH). The atlas has been carefully aligned with the widely used Paxinos-Watson atlas based on optical sections to allow comparisons between histochemical and immuno-marker data, and the use of the Paxinos-Watson abbreviation set. Our MR atlas attempts to make a seamless connection with the advantageous features of the Paxinos-Watson atlas, and to extend the utility of the data through the unique capabilities of MR histology: a) ability to view the brain in the skull with limited distortion from shrinkage or sectioning; b) isotropic spatial resolution, which permits sectioning along any arbitrary axis without loss of detail; c) three-dimensional (3D) images preserving spatial relationships; and d) widely varied contrast dependent on the unique properties of water protons. 3D diffusion tensor images (DTI) at what we believe to be the highest resolution ever attained in the rat provide unique insight into white matter structures and connectivity. The 3D isotropic data allow registration of multiple data sets into a common reference space to provide average atlases not possible with conventional histology. The resulting multidimensional atlas that combines Paxinos-Watson with multidimensional MRH images from multiple specimens provides a new, comprehensive view of the neuroanatomy of the rat and offers a collaborative platform for future rat brain studies. To access the atlas, click view supplementary materials in CIVMSpace at the bottom of the following webpage.
Proper citation: Adult Wistar Rat Atlas (RRID:SCR_006288) Copy
Community site to make brain imaging research easier that aims to build software that is clearly written, clearly explained, a good fit for the underlying ideas, and a natural home for collaboration.
Proper citation: Neuroimaging in Python (RRID:SCR_013141) Copy
http://www.nitrc.org/projects/lwdp/
A lightweight framework for setting up dependency-driven processing pipelines. The tool is essentially a configurable shell script (sh/bash), which can be included in other scripts and primarily provides a small number of utility functions for dependency checking and NFS-safe file locking for cluster processing.
Proper citation: Lightweight Data Pipeline (RRID:SCR_014135) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.