Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.janelia.org/team-project/fly-em
A project producing datasets, software, and algorithms that is developing the technology to produce connectomes at the electron microscopic level of behaviorally-relevant neural circuits as well as the entire Drosophila nervous system. This technology will enable them to create a map of every neuron and synapse in the Drosophila nervous system, using novel approaches to electron microscopy (EM) as the foundation. In the same way that the fly genome paved the way for larger projects, including sequencing the human genome, Fly EM may ultimately contribute to our understanding of the human brain by establishing a fly "connectome" a map that shows how all neurons in the fly brain are connected to each other. They began their entry into EM reconstruction with the fly's adult visual system, where much is known about cell types from previous EM and histological studies, as well as ongoing studies in the Fly Light Project. In addition to establishing and publishing a fly connectome, Fly EM will make technology and methodology available that is needed to perform large-scale EM reconstructions. Fly EM will generally pursue an open policy with their datasets, software, and algorithms after relevant publications. When an EM reconstruction is published, the derived connectome and reconstructed neuronal skeletons will be made available online. The raw data and annotatations will be made available upon request as logistics dictate. To encourage further collaboration and scientific discovery, a small fraction of their raw data and corresponding segmentation will be made available independent of publication. Their goal is to enable others who wish to approach the many algorithmic challenges, but who do not have access to an EM facility, to have the data they need to support methods development, as well as their results to use as a benchmark. Fly EM emphasizes publication of supporting techniques and software approaches before major EM reconstruction releases to encourage rapid feedback from the community and adoption of their strategies. FlyEM maintains much of its software in the open-source repository GitHub:http://janelia-flyem.github.com. They will provide information on official release versions of these packages on git-hub when it reaches reasonable maturity.
Proper citation: Fly EM (RRID:SCR_002242) Copy
https://www.genevestigator.com/gv/
A high performance search engine for gene expression that integrates thousands of manually curated public microarray and RNAseq experiments and nicely visualizes gene expression across different biological contexts (diseases, drugs, tissues, cancers, genotypes, etc.). There are two basic analysis approaches: # for a gene of interest, identify which conditions affect its expression. # for condition(s) of interest, identify which genes are specifically expressed in this/these conditions. Genevestigator builds on the deep integration of data, both at the level of data normalization and on the level of sample annotations. This deep integration allows scientists to ask new types of questions that cannot be addressed using conventional tools.
Proper citation: Genevestigator (RRID:SCR_002358) Copy
Web-based microarray data analysis and visualization system powered by CRC, or Chinese Restaurant cluster, a Dirichlet process model-based clustering algorithm recently developed by Dr. Steve Qin. It also incorporates several gene expression analysis programs from Bioconductor, including GOStats, genefilter, and Heatplus. CRCView also installs from the Bioconductor system 78 annotation libraries of microarray chips for human (31), mouse (24), rat (14), zebrafish (1), chicken (1), Drosophila (3), Arabidopsis (2), Caenorhabditis elegans (1), and Xenopus Laevis (1). CRCView allows flexible input data format, automated model-based CRC clustering analysis, rich graphical illustration, and integrated Gene Ontology (GO)-based gene enrichment for efficient annotation and interpretation of clustering results. CRC has the following features comparing to other clustering tools: 1) able to infer number of clusters, 2) able to cluster genes displaying time-shifted and/or inverted correlations, 3) able to tolerate missing genotype data and 4) provide confidence measure for clusters generated. You need to register for an account in the system to store your data and analyses. The data and results can be visited again anytime you log in.
Proper citation: CRCView (RRID:SCR_007092) Copy
http://text0.mib.man.ac.uk/software/mldic/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 9, 2022. System that retrieves relevant UniProt IDs from BioThesaurus entries using a soft string matching algorithm.
Proper citation: Smart Dictionary Lookup (RRID:SCR_000568) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.