Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://bioinf.uni-greifswald.de/augustus/
Software for gene prediction in eukaryotic genomic sequences. Serves as a basis for further steps in the analysis of sequenced and assembled eukaryotic genomes.
Proper citation: Augustus (RRID:SCR_008417) Copy
This site is designed for researchers and students who want a quick way to generate random numbers or assign participants to experimental conditions. Research Randomizer can be used in a wide variety of situations, including psychology experiments, medical trials, and survey research. The program uses a JavaScript random number generator to produce customized sets of random numbers. Since its release in 1997, Research Randomizer has been used to generate number sets over 10.7 million times. This service is part of Social Psychology Network and is fast, free, and runs with any recent web browser as long as JavaScript isn''t disabled. Research Randomizer is a free service offered to students and researchers interested in conducting random assignment and random sampling. By using this service, you agree to abide by the SPN User Policy and to hold Research Randomizer and its staff harmless in the event that you experience a problem with the program or its results. Although every effort has been made to develop a useful means of generating random numbers, Research Randomizer and its staff do not guarantee the quality or randomness of numbers generated. Any use to which these numbers are put remains the sole responsibility of the user who generated them. What are the system requirements needed to run Research Randomizer? This program works best with Firefox and other recent web browsers. If you''re using a browser that came with America Online, or older browsers made prior to 2003, you may experience some difficulties with Research Randomizer. You may also not be able to use Research Randomizer with some limited-function browsers that do not fully support JavaScript, such as the Opera broswer used on certain game consoles. We would suggest that you update to a fairly recent, fully- functional stand-alone browser. How do I know what browser I am using? The easiest way to find this out is to click Help on the pulldown menu at the top of the screen. One of the options should be About Mozilla Firefox, About Internet Explorer, About Netscape, or something similar. Selecting this option will open a window that displays the name, version number, and copyright date of your browser. How does Research Randomizer generate its numbers? Research Randomizer uses the Math.random method within the JavaScript programming language to generate its random numbers for all modern web browsers. If you are using an older version of Microsoft Internet Explorer or Netscape Navigator (that is prior to version 4.0 of either), Research Randomizer uses an adaptation of the Central Randomizer by Paul Houle. Note that Research Randomizer no longer supports much-older browsers by other vendors (e.g., Mosaic). Who designed Research Randomizer? The original idea and programming for Research Randomizer came from Geoffrey C. Urbaniak in 1997. Research Randomizer was then jointly developed with Scott Plous, webmaster of Social Psychology Network, and online tutorials were added to the main program. In 1999 the site was redesigned with the assistance of Mike Lestik, in 2003 Mike Lestik added the download function, and in 2007 Mike Lestik and Scott Plous redesigned the site and added new content.
Proper citation: Research Randomizer (RRID:SCR_008563) Copy
http://www.scioncorp.com/pages/product_prices.htm#Software
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. Commercial software vendor.
Proper citation: Scion Image (RRID:SCR_008673) Copy
http://bejerano.stanford.edu/prism/public/html/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PRISM (Stanford database) (RRID:SCR_005375) Copy
Kepler is a software application for analyzing and modeling scientific data. Using Kepler''s graphical interface and components, scientists with little background in computer science can create executable models, called scientific workflows, for flexibly accessing scientific data (streaming sensor data, medical and satellite images, simulation output, observational data, etc.) and executing complex analyses on this data. Kepler is developed by a cross-project collaboration led by the Kepler/CORE team. The software builds upon the mature Ptolemy II framework, developed at the University of California, Berkeley. Ptolemy II is a software framework designed for modeling, design, and simulation of concurrent, real-time, embedded systems. The Kepler Project is dedicated to furthering and supporting the capabilities, use, and awareness of the free and open source, scientific workflow application, Kepler. Kepler is designed to help scien��tists, analysts, and computer programmers create, execute, and share models and analyses across a broad range of scientific and engineering disciplines. Kepler can operate on data stored in a variety of formats, locally and over the internet, and is an effective environment for integrating disparate software components, such as merging R scripts with compiled C code, or facilitating remote, distributed execution of models. Using Kepler''s graphical user interface, users simply select and then connect pertinent analytical components and data sources to create a scientific workflowan executable representation of the steps required to generate results. The Kepler software helps users share and reuse data, workflows, and compo��nents developed by the scientific community to address common needs. Kepler is a java-based application that is maintained for the Windows, OSX, and Linux operating systems. The Kepler Project supports the official code-base for Kepler development, as well as provides materials and mechanisms for learning how to use Kepler, sharing experiences with other workflow developers, reporting bugs, suggesting enhancements, etc. The Kepler Project Leadership Team works to assure the long-term technical and financial viability of Kepler by making strategic decisions on behalf of the Kepler user community, as well as providing an official and durable point-of-contact to articulate and represent the interests of the Kepler Project and the Kepler software application. Details about how to get more involved with the Kepler Project can be found in the developer section of this website.
Proper citation: Kepler (RRID:SCR_005252) Copy
http://www.bioextract.org/GuestLogin
An open, web-based system designed to aid researchers in the analysis of genomic data by providing a platform for the creation of bioinformatic workflows. Scientific workflows are created within the system by recording tasks performed by the user. These tasks may include querying multiple, distributed data sources, saving query results as searchable data extracts, and executing local and web-accessible analytic tools. The series of recorded tasks can then be saved as a reproducible, sharable workflow available for subsequent execution with the original or modified inputs and parameter settings. Integrated data resources include interfaces to the National Center for Biotechnology Information (NCBI) nucleotide and protein databases, the European Molecular Biology Laboratory (EMBL-Bank) non-redundant nucleotide database, the Universal Protein Resource (UniProt), and the UniProt Reference Clusters (UniRef) database. The system offers access to numerous preinstalled, curated analytic tools and also provides researchers with the option of selecting computational tools from a large list of web services including the European Molecular Biology Open Software Suite (EMBOSS), BioMoby, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The system further allows users to integrate local command line tools residing on their own computers through a client-side Java applet.
Proper citation: BioExtract (RRID:SCR_005397) Copy
Tool for searching sequence databases for homologs of protein sequences, and for making protein sequence alignments. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs). Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older scoring methodology, HMMER aims to be significantly more accurate and more able to detect remote homologs because of the strength of its underlying mathematical models. In the past, this strength came at significant computational expense, but in the new HMMER3 project, HMMER is now essentially as fast as BLAST.
Proper citation: Hmmer (RRID:SCR_005305) Copy
http://code.google.com/p/hydra-sv/
Software that detects structural variation (SV) breakpoints by clustering discordant paired-end alignments whose signatures corroborate the same putative breakpoint. Hydra can detect breakpoints caused by all classes of structural variation. Moreover, it was designed to detect variation in both unique and duplicated genomic regions; therefore, it will examine paired-end reads having multiple discordant alignments. Hydra does not attempt to classify SV breakpoints based on the mapping distances and orientations of each breakpoint cluster, it merely detects and reports breakpoints. This is an intentional decision, as it was observed that in loci affected by complex rearrangements, the type of variant suggested by the breakpoint signature is not always correct. Hydra does report the orientations, distances, number of supporting read-pairs, etc., for each breakpoint. It is suggested that downstream methods be used to classify variants based on the genomic features that they overlap and the co-occurrence of other breakpoints. For example, they developed BEDTools for exactly this purpose and the breakpoints reported by Hydra are in the BEDPE format used by BEDTools. Future releases of Hydra will include scripts that assist in the classification process.
Proper citation: Hydra (RRID:SCR_005260) Copy
http://pass.cribi.unipd.it/cgi-bin/pass.pl
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 19, 2020.A program to align short sequences that has been developed with an innovative strategy to perform fast gapped and ungapped alignment onto a reference sequence. It supports several data formats and allows the user to modulate very finely the sensitivity of the alignments. The program is designed to handle huge amounts of short reads generated by ILLUMINA, SOLiD and Roche-454 technology. The optimization of the internal data structure and a filter based on precomputed short-word alignments allow the program to skip false positives in the extension phase, thus reducing the execution time without loss of sensitivity. The final alignment is performed by dynamic programming., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PASS (RRID:SCR_005490) Copy
A set of programs that map and assemble fixed-length Solexa/SOLiD reads in a fast and accurate way.
Proper citation: Maq (RRID:SCR_005485) Copy
http://bowtie-bio.sourceforge.net/index.shtml
Software ultrafast memory efficient tool for aligning sequencing reads. Bowtie is short read aligner.
Proper citation: Bowtie (RRID:SCR_005476) Copy
http://www.ebi.ac.uk/Tools/pfa/iprscan/
Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.
Proper citation: InterProScan (RRID:SCR_005829) Copy
Ratings or validation data are available for this resource
Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.
Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy
http://www.ici.upmc.fr/cluego/
A Cytoscape plug-in that visualizes the non-redundant biological terms for large clusters of genes in a functionally grouped network. It can be used in combination with GOlorize. The identifiers can be uploaded from a text file or interactively from a network of Cytoscape. The type of identifiers supported can be easily extended by the user. ClueGO performs single cluster analysis and comparison of clusters. From the ontology sources used, the terms are selected by different filter criteria. The related terms which share similar associated genes can be combined to reduce redundancy. The ClueGO network is created with kappa statistics and reflects the relationships between the terms based on the similarity of their associated genes. On the network, the node colour can be switched between functional groups and clusters distribution. ClueGO charts are underlying the specificity and the common aspects of the biological role. The significance of the terms and groups is automatically calculated. ClueGO is easy updatable with the newest files from Gene Ontology and KEGG. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: ClueGO (RRID:SCR_005748) Copy
Software to determine most stable reference (housekeeping) genes from set of tested candidate reference genes in given sample panel. From this, gene expression normalization factor can be calculated for each sample based geometric mean of user-defined number of reference genes.
Proper citation: geNORM (RRID:SCR_006763) Copy
http://www.bioconductor.org/packages/2.11/bioc/html/ShortRead.html
Software package for input, quality assessment and exploration of high-throughput sequence data. Used for input, quality assurance, and basic manipulation of `short read'' DNA sequences such as those produced by Solexa, 454, and related technologies, including exible import of common short read data formats.
Proper citation: ShortRead (RRID:SCR_006813) Copy
http://www.mediacy.com/imageproplus
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 18,2023. Software package to capture, process, measure, analyze and share images and data.
Proper citation: Image Pro Plus (RRID:SCR_007369) Copy
http://drive5.com/usearch/manual/uchime_algo.html
An algorithm for detecting chimeric sequences.
Proper citation: UCHIME (RRID:SCR_008057) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 23,2023.Software package for comparison and analysis of microbial communities, primarily based on high-throughput amplicon sequencing data, but also supporting analysis of other types of data. QIMME analyzes and transforms raw sequencing data generated on Illumina or other platforms to publication quality graphics and statistics.
Proper citation: QIIME (RRID:SCR_008249) Copy
http://evolution.genetics.washington.edu/phylip.html
A free package of software programs for inferring phylogenies (evolutionary trees). The source code is distributed (in C), and executables are also distributed. In particular, already-compiled executables are available for Windows (95/98/NT/2000/me/xp/Vista), Mac OS X, and Linux systems. Older executables are also available for Mac OS 8 or 9 systems.
Proper citation: PHYLIP (RRID:SCR_006244) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.