Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://cran.r-project.org/src/contrib/Archive/iFad/
An R software package implementing a bayesian sparse factor model for the joint analysis of paired datasets, the gene expression and drug sensitivity profiles, measured across the same panel of samples, e.g. cell lines.
Proper citation: iFad (RRID:SCR_000271) Copy
Provides digital infrastructure capabilities for research and innovation across Queensland and Australia. Provides services, infrastructure and support for computation and data driven collaborative research and its application in industry. Members are six Queensland universities – The University of Queensland, Queensland University of Technology, Griffith University, James Cook University, CQUniversity, and the University of Southern Queensland. The University of the Sunshine Coast is an associate member. Member employees provide support and development services.
Proper citation: Queensland Cyber Infrastructure Foundation Ltd (RRID:SCR_000208) Copy
A software for genome assembly, and is specifically designed to analyze long Sanger-chemistry reads.
Proper citation: ARACHNE (RRID:SCR_000351) Copy
https://sites.google.com/site/beckerjeremie/home/nucleofinder
A software for a statistical approach for the detection of nucleosome positions in a cell population. The software identifies important features of nucleosome organization such as the spacing downstream of active promoters and the enrichment and depletion of GC/AT dinucleotides of in vitro nucleosomes.
Proper citation: NucleoFinder (RRID:SCR_000368) Copy
A commercial graphing software company that offers scientific software for statistical analyses, curve fitting and data analysis. It offers four programs: Prism, InStat, StatMate and QuickCalcs.
Proper citation: GraphPad (RRID:SCR_000306) Copy
Software environment for maintaining databases of molecular sequences and additional information, and for analyzing the sequence data, with emphasis on phylogeny reconstruction. Programs have primarily been developed for ribosomal ribonucleic acid (rRNA) sequences and, therefore, contain special tools for alignment and analysis of these structures. However, other molecular sequence data can also be handled. Protein gene sequences and predicted protein primary structures as well as protein secondary structures can be stored in the same database. ARB package is designed for graphical user interface. Program control and data display are available in a hierarchical set of windows and subwindows. Majority of operations can be controlled using mouse for moving pointer and the left mouse button for initiating and performing operations.
Proper citation: ARB project (RRID:SCR_000515) Copy
A lab organization which has bases in Munich, Germany and at Columbia University and focuses its research on protein structure and function using sequence and evolutionary information. They utilize machine learning and statistical methods to analyze genetic material and its gene products. Research goals of the lab involve using protein and DNA sequences along with evolutionary information to predict aspects of the proteins relevant to the advance of biomedical research.
Proper citation: ROSTLAB (RRID:SCR_000792) Copy
http://blog.expressionplot.com/
Software package consisting of a default back end, which prepares raw sequencing or Affymetrix microarray data, and a web-based front end, which offers a biologically centered interface to browse, visualize, and compare different data sets.
Proper citation: ExpressionPlot (RRID:SCR_001904) Copy
https://www.mangold-international.com/en/products/software/behavior-research-with-mangold-interact
Software platform for synchronized viewing and analysis of video footage and audio files in observational research by Mangold International GmbH. Qualitative and quantitative video coding software.
Proper citation: Interact (RRID:SCR_019254) Copy
https://www.leica-microsystems.com/products/microscope-software/details/product/leica-las-x-ls/
Software for image capture, processing and analysis with Leica fluorescence and confocal microscopes.
Proper citation: Leica Application Suite X (RRID:SCR_013673) Copy
http://www.cyto.purdue.edu/flowcyt/software/Winmdi.htm
Software to analyze flow cytometry listmode data files.
Proper citation: WinMDI Software (RRID:SCR_013745) Copy
http://dirt.projectbamboo.org/
Registry of digital research tools for scholarly use that makes it easy for digital humanists and others conducting digital research to find and compare resources ranging from content management systems to music OCR, statistical analysis packages to mindmapping software., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Bamboo DiRT (RRID:SCR_002556) Copy
A curated database that provides comprehensive integrated biological information for Saccharomyces cerevisiae along with search and analysis tools to explore these data. SGD allows researchers to discover functional relationships between sequence and gene products in fungi and higher organisms. The SGD also maintains the S. cerevisiae Gene Name Registry, a complete list of all gene names used in S. cerevisiae which includes a set of general guidelines to gene naming. Protein Page provides basic protein information calculated from the predicted sequence and contains links to a variety of secondary structure and tertiary structure resources. Yeast Biochemical Pathways allows users to view and search for biochemical reactions and pathways that occur in S. cerevisiae as well as map expression data onto the biochemical pathways. Literature citations are provided where available.
Proper citation: SGD (RRID:SCR_004694) Copy
Biomedical technology research center that develops mass spectrometry-based tools for the study of proteins, lipids and metaboilites. These include biomarker identification, stable isotope mass spectrometry and the analysis of intact proteins. Our goals are: * to conduct basic research in the science of mass spectrometry * to establish collaborative research projects with scientists at WU and at other institutions * to provide a service in mass spectrometry * to educate and train students in mass spectrometry * to disseminate results of our research and descriptions of the subject of mass spectrometry
Proper citation: NIH / NCRR Mass Spectrometry Resource Washington University in St. Louis (RRID:SCR_009009) Copy
Biomedical technology research center that develops new algorithms, visualizations and conceptual frameworks to study biological networks at multiple levels and scales, from protein-protein and genetic interactions to cell-cell communication and vast social networks. They are developing freely available, open-source suite of software technology that broadly enables network-based visualization, analysis, and biomedical discovery for NIH-funded researchers. This software is enabling researchers to assemble large-scale biological data into models of networks and pathways and to use these networks to better understand how biological systems operate under normal conditions and how they fail in disease. The National Resource for Network Biology is organized around the following key components: Technology Research and Development, Driving Biomedical Projects, Outreach, Training and Dissemination of Tools. The NRNB supports several types of training events, including both virtual and live workshops; tutorials sessions for clinicians, biologists and bioinformaticians; presentations and demonstrations at conferences; online tutorials and webcasts; and annual symposium.
Proper citation: National Resource for Network Biology (RRID:SCR_004259) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. A scientific community-crowdsourced database containing the RNA secondary structures of known types and organisms. It is meant to provide a simple and powerful way to analyze, search and update a shared repository of information.
Proper citation: RNA STRAND-The RNA secondary STRucture and statistical ANalysis Database (RRID:SCR_000086) Copy
http://www.primervfx.com/#welcome
PrimerParadise is an online PCR primer database for genomics studies. The database contains predesigned PCR primers for amplification of exons, genes and SNPs of almost all sequenced genomes. Primers can be used for genome-wide projects (resequencing, mutation analysis, SNP detection etc). The primers for eukaryotic genomes have been tested with e-PCR to make sure that no alternative products will be generated. Also, all eukaryotic primers have been filtered to exclude primers that bind excessively throughout the genome. Genes are amplified as amplicons. Amplicons are defined as only one genes exons containing maximaly 3000 bp long dna segments. If gene is longer than 3000 bp then it is split into the segments at length 3000 bp. So for example gene at length 5000 bp is split into two segment and for both segments there were designed a separate primerpair. If genes exons length is over 3000 bp then it is split into amplicons as well. Every SNP has one primerpair. In addition of considering repetitive sequences and mono-dinucleotide repeats, we avoid designing primers to genome regions which contain other SNPs. -There are two ways to search for primers: you can use features IDs ( for SNP primers Reference ID, for gene/exon primers different IDs (Ensembl gene IDs, HUGO IDs for human genes, LocusLink IDs, RefSeq IDs, MIM IDs, NCBI gene names, SWISSPROT IDs for bacterial genes, VEGA gene IDs for human and mouse, Sanger S.pombe systematic gene names and common gene names, S.cerevisiae GeneBanks Locus, AccNo, GI IDs and common gene names) -you can use genome regions (chromosome coordinates, chromosome bands if exists) -Currently we provide 3 primers collections: proPCR for prokaryotic organisms genes primers -euPCR for eukaryotic organisms genes/exons primers -snpPCR for eukaryotic organisms SNP primers Sponsors: PrimerStudio is funded by the University of Tartu.
Proper citation: PrimerStudio (RRID:SCR_008232) Copy
http://locustdb.genomics.org.cn/
The migratory locust (Locusta migratoria) is an orthopteran pest and a representative member of hemimetabolous insects. Its transcriptomic data provide invaluable information for molecular entomology study of the insect and pave a way for comparative studies of other medically, agronomically, and ecologically relevant insects. This first transcriptomic database of the locust (LocustDB) has been developed, building necessary infrastructures to integrate, organize, and retrieve data that are either currently available or to be acquired in the future. It currently hosts 45,474 high quality EST sequences from the locust, which were assembled into 12,161 unigenes. This database contains original sequence data, including homologous/orthologous sequences, functional annotations, pathway analysis, and codon usage, based on conserved orthologous groups (COG), gene ontology (GO), protein domain (InterPro), and functional pathways (KEGG). It also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, such as the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. LocustDB also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, such as the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. It starts with the first transcriptome information for an orthopteran and hemimetabolous insect and will be extended to provide a framework for incorporation of in-coming genomic data of relevant insect groups and a workbench for cross-species comparative studies.
Proper citation: Migratory Locust EST Database (RRID:SCR_008201) Copy
https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 29,2025. Electroencephalogram (EEG) data recorded from invasive and scalp electrodes. The EEG database contains invasive EEG recordings of 21 patients suffering from medically intractable focal epilepsy. The data were recorded during an invasive pre-surgical epilepsy monitoring at the Epilepsy Center of the University Hospital of Freiburg, Germany. In eleven patients, the epileptic focus was located in neocortical brain structures, in eight patients in the hippocampus, and in two patients in both. In order to obtain a high signal-to-noise ratio, fewer artifacts, and to record directly from focal areas, intracranial grid-, strip-, and depth-electrodes were utilized. The EEG data were acquired using a Neurofile NT digital video EEG system with 128 channels, 256 Hz sampling rate, and a 16 bit analogue-to-digital converter. Notch or band pass filters have not been applied. For each of the patients, there are datasets called ictal and interictal, the former containing files with epileptic seizures and at least 50 min pre-ictal data. the latter containing approximately 24 hours of EEG-recordings without seizure activity. At least 24 h of continuous interictal recordings are available for 13 patients. For the remaining patients interictal invasive EEG data consisting of less than 24 h were joined together, to end up with at least 24 h per patient. An interdisciplinary project between: * Epilepsy Center, University Hospital Freiburg * Bernstein Center for Computational Neuroscience (BCCN), Freiburg * Freiburg Center for Data Analysis and Modeling (FDM).
Proper citation: Electroencephalogram Database: Prediction of Epileptic Seizures (RRID:SCR_008032) Copy
http://www.schematikon.org/Nh3D.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. It is freely available as a reference dataset for the statistical analysis of sequence and structure features of proteins in the PDB. It is a dataset of structurally dissimilar proteins. This dataset has been compiled by selecting well resolved representatives from the Topology level of the CATH database which hierarchically classifies all protein structures. These have been been pruned to remove: i) domains that may contain homologous elements (by pairwise sequence comparison and structural superposition of aligned residues) ii) internal duplications (by repeat detection) iii) regions with high B-Factor The statistical analysis of protein structures requires datasets in which structural features can be considered independently distributed, i.e. not related through common ancestry, and that fulfill minimal requirements regarding the experimental quality of the structures it contains. However, non-redundant datasets based on sequence similarity invariably contain distantly related homologues. Here a reference dataset of non-homologous protein domains is provided, assuming that structural dissimilarity at the topology level is incompatible with recognizable common ancestry. It contains the best refined representatives of each Topology level, validates structural dissimilarity and removes internally duplicated fragments. The compilation of Nh3D is fully scripted. The current Nh3D list contains 570 domains with a total of 90780 residues. It covers more than 70% of folds at the Topology level of the CATH database and represents more than 90% of the structures in the PDB that have been classified by CATH. Even though all protein pairs are structurally dissimilar, some pairwise sequence identities after global alignment are greater than 30%. Nh3D is freely available as a reference dataset for the statistical analysis of sequence and structure features of proteins in the PDB.
Proper citation: Nh3D: A Reference Dataset of Structures of Non-homologous Proteins (RRID:SCR_008212) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.