Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Public global Protein Data Bank archive of macromolecular structural data overseen by organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). This site provides information about services provided by individual member organizations and about projects undertaken by wwPDB. Data available via websites of its member organizations.
Proper citation: Worldwide Protein Data Bank (wwPDB) (RRID:SCR_006555) Copy
http://clonesearch.jdrfnpod.org/
Database of sequence data generated from high-throughput immunosequencing of the TCR beta chain (TRB) and B cell receptor (BCR) immunoglobulin heavy chain (IGH). This data comes from cells from NPOD donors.
Proper citation: nPOD TCR/BCR Search (RRID:SCR_015851) Copy
https://medschool.cuanschutz.edu/diabetes-research-center
Center to facilitate diabetes research at University of Colorado by integrating interdisciplinary basic, translational, and clinical diabetes research base; providing infrastructure and resources that are indispensable for continued discovery and progress towards diabetes research and developing improved prediction and disease prevention;providing P&F and enrichment programs to support DRC investigators and their trainees, and recruit new and young investigators into diabetes research.
Proper citation: University of Colorado Diabetes Research Center (RRID:SCR_022897) Copy
https://ncdiabetesresearch.org/
Interactive regional diabetes research community across four premiere research institutions in North Carolina, who currently garner over $70 million annually for support of their diabetes research: Duke University (Duke), The University of North Carolina at Chapel Hill (UNC), Wake Forest School of Medicine (WF), and North Carolina A&T State University (NC A&T State). NCDRC supports Research Cores that represent unique strengths at each institution.
Proper citation: North Carolina Diabetes Research Center (RRID:SCR_022896) Copy
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301786/
Device to control spatial and temporal variations in oxygen tensions to better replicate in vivo biology. Consists of three parallel connected tissue chambers and oxygen scavenger channel placed adjacent to these tissue chambers. Provides consistent control of spatial and temporal oxygen gradients in tissue microenvironment and can be used to investigate important oxygen dependent biological processes present in cancer, ischemic heart disease, and wound healing.
Proper citation: Microfluidic device to attain high spatial and temporal control of oxygen (RRID:SCR_017131) Copy
http://www.cristudy.org/Chronic-Kidney-Disease/Chronic-Renal-Insufficiency-Cohort-Study/
A prospective observational national cohort study poised to make fundamental insights into the epidemiology, management, and outcomes of chronic kidney disease (CKD) in adults with intended long-term follow up. The major goals of the CRIC Study are to answer two important questions: * Why does kidney disease get worse in some people, but not in others? * Why do persons with kidney disease commonly experience heart disease and stroke? The CRIC Scientific and Data Coordinating Center at Penn receives data and provides ongoing support for a number of Ancillary Studies approved by the CRIC Cohort utilizing both data collected about CRIC study participants as well as their biological samples. The CRIC Study has enrolled over 3900 men and women with CKD from 13 recruitment sites throughout the country. Following this group of individuals over the past 10 years has contributed to the knowledge of kidney disease, its treatment, and preventing its complications. The NIDDKwill be extending the study for an additional 5 years, through 2018. An extensive set of study data is collected from CRIC Study participants. With varying frequency, data are collected in the domains of medical history, physical measures, psychometrics and behaviors, biomarkers, genomics/metabolomics, as well as renal, cardiovascular and other outcomes. Measurements include creatinine clearance and iothalamate measured glomerular filtration rate. Cardiovascular measures include blood pressure, ECG, ABI, ECHO, and EBCT. Clinical CV outcomes include MI, ischemic heart disease-related death, acute coronary syndromes, congestive heart failure, cerebrovascular disease, peripheral vascular disease, and composite outcomes. The CRIC Study has delivered in excess of 150,000 bio-samples and a dataset characterizing all 3939 CRIC participants at the time of study entry to the NIDDKnational repository. The CRIC Study will also be delivering a dataset to NCBI''''s Database for Genotypes and Phenotypes.
Proper citation: Chronic Renal Insufficiency Cohort Study (RRID:SCR_009016) Copy
http://www.utsouthwestern.edu/labs/acute-liver/
Clinical research network for gathering prospective data and bio-samples on acute liver failure in adults since 1998. Clinical histories and laboratory and outcome data are available. Sample types include serum, plasma, urine, DNA, and liver tissue.
Proper citation: Acute Liver Failure Study Group (RRID:SCR_001463) Copy
https://www.signalingpathways.org/ominer/query.jsf
THIS RESOURCE IS NO LONGER IN SERVICE.Documented on February 25, 2022.Software tool as knowledge environment resource that accrues, develops, and communicates information that advances understanding of structure, function, and role in disease of nuclear receptors (NRs) and coregulators. It specifically seeks to elucidate roles played by NRs and coregulators in metabolism and development of metabolic disorders. Includes large validated data sets, access to reagents, new findings, library of annotated prior publications in field, and journal covering reviews and techniques.As of March 20, 2020, NURSA is succeeded by the Signaling Pathways Project (SPP).
Proper citation: Nuclear Receptor Signaling Atlas (RRID:SCR_003287) Copy
https://github.com/zdk123/SpiecEasi
Software R package for microbiome network analysis. Used for inference of microbial ecological networks from amplicon sequencing datasets. Combines data transformations developed for compositional data analysis with graphical model inference framework that assumes underlying ecological association network is sparse.
Proper citation: SpiecEasi (RRID:SCR_022712) Copy
http://chgr.mc.vanderbilt.edu/page/gist
Software package to test if a marker can account in part for the linkage signal in its region. There are two versions of the software: Windows and Linux/Unix.
Proper citation: Genotype-IBD Sharing Test (RRID:SCR_006257) Copy
https://github.com/FunctionalUrology/MLme
Software toolkit for Machine Learning Driven Data Analysis. Simplifies machine learning for data exploration, visualization and analysis.
Proper citation: Machine Learning Made Easy (RRID:SCR_024439) Copy
International repository for importation, curation, genotypic and phenotypic validation, cryopreservation, and distribution of mouse stocks of value to the type 1 diabetes scientific community holding over 250 genetically modified or congenic mouse stocks that are being used to dissect genetic and biologic features of T1D. They provide extensive genotypic and phenotypic quality control and genetic stabilization for these strains, as well as incidence studies when available. An added value of T1DR stocks is their ability to propel advances in related areas of science, including research in non-T1D autoimmunity and infectious diseases. The staff provides information and technical assistance regarding selection and use of existing T1DR models, and will provide limited support for development of new models considered to be of high-value for the T1D community. The resource includes strains generated at the Jackson Laboratory as well as strains donated by external scientists. Investigators are highly encouraged to donate a strain to ensure its preservation and availability to other researchers.
Proper citation: Type 1 Diabetes Resource (RRID:SCR_001475) Copy
Project aggregates and provides experimental gene expression data from genito-urinary system. International consortium providing molecular atlas of gene expression for developing organs of GenitoUrinary (GU) tract. Mouse strains to facilitate developmental and functional studies within GU system. Experimental protocols and standard specifications. Tutorials describing GU organogenesis and primary data via database. Data are from large-scale in situ hybridization screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of developing mouse genitourinary (GU) system.
Proper citation: GenitoUrinary Development Molecular Anatomy Project (RRID:SCR_001554) Copy
https://github.com/SciCrunch/Antibody-Watch
Text mining antibody specificity from literature. Helps researchers identify potential problems with antibody specificity. By mining the scientific literature and linking findings to Research Resource Identifiers (RRIDs), it provides alerts on antibodies that may yield unreliable results, supporting reproducibility in biomedical research.
Proper citation: Antibody Watch (RRID:SCR_027424) Copy
http://www.uchicagoddrcc.org/research-cores/tissue-engineering-and-cell-models-core
Core that provides services such as a repository for intestinal cell lines, Tissue Engineering Models, experimental materials, and supplies for digestive disease research.
Proper citation: University of Chicago Digestive Diseases Research Core Center Tissue Engineering and Cell Models Core (RRID:SCR_015604) Copy
Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.
Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 26,2019. In October 2016, T1DBase has merged with its sister site ImmunoBase (https://immunobase.org). Documented on March 2020, ImmunoBase ownership has been transferred to Open Targets (https://www.opentargets.org). Results for all studies can be explored using Open Targets Genetics (https://genetics.opentargets.org). Database focused on genetics and genomics of type 1 diabetes susceptibility providing a curated and integrated set of datasets and tools, across multiple species, to support and promote research in this area. The current data scope includes annotated genomic sequences for suspected T1D susceptibility regions; genetic data; microarray data; and global datasets, generally from the literature, that are useful for genetics and systems biology studies. The site also includes software tools for analyzing the data.
Proper citation: T1DBase (RRID:SCR_007959) Copy
http://www.broad.mit.edu/mpg/grail/
A tool to examine relationships between genes in different disease associated loci. Given several genomic regions or SNPs associated with a particular phenotype or disease, GRAIL looks for similarities in the published scientific text among the associated genes. As input, users can upload either (1) SNPs that have emerged from a genome-wide association study or (2) genomic regions that have emerged from a linkage scan or are associated common or rare copy number variants. SNPs should be listed according to their rs#''s and must be listed in HapMap. Genomic Regions are specified by a user-defined identifier, the chromosome that it is located on, and the start and end base-pair positions for the region. Grail can take two sets of inputs - Query regions and Seed regions. Seed regions are definitely associated SNPs or genomic regions, and Query regions are those regions that the user is attempting to evaluate agains them. In many applications the two sets are identical. Based on textual relationships between genes, GRAIL assigns a p-value to each region suggesting its degree of functional connectivity, and picks the best candidate gene. GRAIL is developed by Soumya Raychaudhuri in the labs of David Altshuler and Mark Daly at the Center for Human Genetic Research of Massachusetts General Hospital and Harvard Medical School, and the Broad Institute. GRAIL is described in manuscript, currently in preparation.
Proper citation: Gene Relationships Across Implicated Loci (RRID:SCR_008537) Copy
http://www.jneurosci.org/supplemental/18/12/4570/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 29, 2013. Supplemental data for the paper Changes in mitochondrial function resulting from synaptic activity in the rat hippocampal slice, by Vytautas P. Bindokas, Chong C. Lee, William F. Colmers, and Richard J. Miller that appears in the Journal of Neuroscience June 15, 1998. You can view digital movies of changes in fluorescence intensity by clicking on the title of interest.
Proper citation: Hippocampal Slice Wave Animations (RRID:SCR_008372) Copy
https://github.com/aametwally/Metabolic_Subphenotype_Predictor
Software repository contains code for Inference of T2D metabolic subphenotypes (MuscleIR, Beta-cell Function, Incretin Effect, Hepatic IR), Identification of dominant metabolic subphenotype, Feature extraction from glucose tiemseries, Extraction of reduced representation of glucose tiemseries,Visualization of metabolic phenotypes based on various glucose-related metrics,Concordance between CGM and Venous glucose values from at home and at clinical setting, Classification of metabolic subphenotypes.
Proper citation: Metabolic Subphenotype Predictor (RRID:SCR_027192) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.