Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
The Hepatitis C Virus Database (HCVdb) is a cooperative project of several groups with the mission of providing to the scientific community studying the hepatitis C virus a comprehensive battery of informational and analytical tools. The Viral Bioinformatics Resource Center (VBRC), the Immune Epitope Database and Analysis Resource (IEDB), the Broad Institute Microbial Sequencing Center (MSC), and the Los Alamos HCV Sequence Database (HCV-LANL) are combining forces to acquire and annotate data on Hepatitis C virus, and to develop and utilize new tools to facilitate the study of this group of organisms.
Proper citation: Hepatitis C Virus Database (HCVdb) (RRID:SCR_005718) Copy
Bioinformatics Resource Center for invertebrate vectors. Provides web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases.
Proper citation: VectorBase (RRID:SCR_005917) Copy
One of eight Bioinformatics Resource Centers nationwide providing comprehensive web-based genomics resources including a relational database and web application supporting data storage, annotation, analysis, and information exchange to support scientific research directed at viruses belonging to the Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, Paramyxoviridae, Poxviridae, and Togaviridae families. These centers serve the scientific community and conduct basic and applied research on microorganisms selected from the NIH/NIAID Category A, B, and C priority pathogens that are regarded as possible bioterrorist threats or as emerging or re-emerging infectious diseases. The VBRC provides a variety of analytical and visualization tools to aid in the understanding of the available data, including tools for genome annotation, comparative analysis, whole genome alignments, and phylogenetic analysis. Each data release contains the complete genomic sequences for all viral pathogens and related strains that are available for species in the above-named families. In addition to sequence data, the VBRC provides a curation for each virus species, resulting in a searchable, comprehensive mini-review of gene function relating genotype to biological phenotype, with special emphasis on pathogenesis.
Proper citation: VBRC (RRID:SCR_005971) Copy
http://www.patricbrc.org/portal/portal/patric/Home
A Bioinformatics Resource Center bacterial bioinformatics database and analysis resource that provides researchers with an online resource that stores and integrates a variety of data types (e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data) and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. The PATRIC project includes three primary collaborators: the University of Chicago, the University of Manchester, and New City Media. The University of Chicago is providing genome annotations and a PATRIC end-user genome annotation service using their Rapid Annotation using Subsystem Technology (RAST) system. The National Centre for Text Mining (NaCTeM) at the University of Manchester is providing literature-based text mining capability and service. New City Media is providing assistance in website interface development. An FTP server and download tool are available.
Proper citation: Pathosystems Resource Integration Center (RRID:SCR_004154) Copy
The Hepatitis C Virus (HCV) Database Project strives to present HCV-associated genetic and immunologic data in a user-friendly way, by providing access to the central database via web-accessible search interfaces and supplying a number of analysis tools.
Proper citation: HCV Databases (RRID:SCR_002863) Copy
http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi
Database of all of the publicly available, complete prokaryotic genomes. In addition to having all of the organisms on a single website, common data types across all genomes in the CMR make searches more meaningful, and cross genome analysis highlight differences and similarities between the genomes. CMR offers a wide variety of tools and resources, all of which are available off of our menu bar at the top of each page. Below is an explanation and link for each of these menu options. * Genome Tools: Find organism lists as well as summary information and analyses for selected genomes. * Searches: Search CMR for genes, genomes, sequence regions, and evidence. * Comparative Tools: Compare multiple genomes based on a variety of criteria, including sequence homology and gene attributes. SNP data is also found under this menu. * Lists: Select and download gene, evidence, and genomic element lists. * Downloads: Download gene sequences or attributes for CMR organisms, or go to our FTP site. * Carts: Select genome preferences from our Genome Cart or download your Gene Cart genes. The Omniome is the relational database underlying the CMR and it holds all of the annotation for each of the CMR genomes, including DNA sequences, proteins, RNA genes and many other types of features. Associated with each of these DNA features in the Omniome are the feature coordinates, nucleotide and protein sequences (where appropriate), and the DNA molecule and organism with which the feature is associated. Also available are evidence types associated with annotation such as HMMs, BLAST, InterPro, COG, and Prosite, as well as individual gene attributes. In addition, the database stores identifiers from other centers such as GenBank and SwissProt, as well as manually curated information on each genome or each DNA molecule including website links. Also stored in the Omniome are precomputed homology data, called All vs All searches, used throughout the CMR for comparative analysis.
Proper citation: JCVI CMR (RRID:SCR_005398) Copy
https://evidencemodeler.github.io/
Software tool for automated eukaryotic gene structure annotation that reports eukaryotic gene structures as weighted consensus of all available evidence. Used to combine ab intio gene predictions and protein and transcript alignments into weighted consensus gene structures. Inputs include genome sequence, gene predictions, and alignment data (in GFF3 format).
Proper citation: EVidenceModeler (RRID:SCR_014659) Copy
https://www.niaid.nih.gov/diseases-conditions/coronaviruses
Information about coronaviruses, including COVID-19. NIAID provides research funding and resources for scientific community to facilitate development of vaccines, therapeutics, and diagnostics for infectious diseases, including those caused by coronaviruses.
Proper citation: NIAID Overview of Coronaviruses (RRID:SCR_018290) Copy
https://gitlab.com/gernerlab/cytomap/-/wikis/home
Software tool as spatial analysis software for whole tissue sections.Utilizes information on cell type and position to phenotype local neighborhoods and reveal how their spatial distribution leads to generation of global tissue architecture.Used to make advanced data analytic techniques accessible for single cell data with position information.
Proper citation: CytoMAP (RRID:SCR_021227) Copy
https://github.com/zdk123/SpiecEasi
Software R package for microbiome network analysis. Used for inference of microbial ecological networks from amplicon sequencing datasets. Combines data transformations developed for compositional data analysis with graphical model inference framework that assumes underlying ecological association network is sparse.
Proper citation: SpiecEasi (RRID:SCR_022712) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on June 8, 2020.Macaque genomic and proteomic resources and how they are providing important new dimensions to research using macaque models of infectious disease. The research encompasses a number of viruses that pose global threats to human health, including influenza, HIV, and SARS-associated coronavirus. By combining macaque infection models with gene expression and protein abundance profiling, they are uncovering exciting new insights into the multitude of molecular and cellular events that occur in response to virus infection. A better understanding of these events may provide the basis for innovative antiviral therapies and improvements to vaccine development strategies.
Proper citation: Macaque.org (RRID:SCR_002767) Copy
miniTUBA is a web-based modeling system that allows clinical and biomedical researchers to perform complex medical/clinical inference and prediction using dynamic Bayesian network analysis with temporal datasets. The software allows users to choose different analysis parameters (e.g. Markov lags and prior topology), and continuously update their data and refine their results. miniTUBA can make temporal predictions to suggest interventions based on an automated learning process pipeline using all data provided. Preliminary tests using synthetic data and laboratory research data indicate that miniTUBA accurately identifies regulatory network structures from temporal data. miniTUBA represents in a network view possible influences that occur between time varying variables in your dataset. For these networks of influence, miniTUBA predicts time courses of disease progression or response to therapies. minTUBA offers a probabilistic framework that is suitable for medical inference in datasets that are noisy. It conducts simulations and learning processes for predictive outcomes. The DBN analysis conducted by miniTUBA describes from variables that you specify how multiple measures at different time points in various variables influence each other. The DBN analysis then finds the probability of the model that best fits the data. A DBN analysis runs every combination of all the data; it examines a large space of possible relationships between variables, including linear, non-linear, and multi-state relationships; and it creates chains of causation, suggesting a sequence of events required to produce a particular outcome. Such chains of causation networks - are difficult to extract using other machine learning techniques. DBN then scores the resulting networks and ranks them in terms of how much structured information they contain compared to all possible models of the data. Models that fit well have higher scores. Output of a miniTUBA analysis provides the ten top-scoring networks of interacting influences that may be predictive of both disease progression and the impact of clinical interventions and probability tables for interpreting results. The DBN analysis that miniTUBA provides is especially good for biomedical experiments or clinical studies in which you collect data different time intervals. Applications of miniTUBA to biomedical problems include analyses of biomarkers and clinical datasets and other cases described on the miniTUBA website. To run a DBN with miniTUBA, you can set a number of parameters and constrain results by modifying structural priors (i.e. forcing or forbidding certain connections so that direction of influence reflects actual biological relationships). You can specify how to group variables into bins for analysis (called discretizing) and set the DBN execution time. You can also set and re-set the time lag to use in the analysis between the start of an event and the observation of its effect, and you can select to analyze only particular subsets of variables.
Proper citation: miniTUBA (RRID:SCR_003447) Copy
http://hcv.lanl.gov/content/immuno/immuno-main.html
The HCV Immunology Database contains a curated inventory of immunological epitopes in HCV and their interaction with the immune system, with associated retrieval and analysis tools. The funding for the HCV database project has stopped, and this website and the HCV immunology database are no longer maintained. The site will stay up, but problems will not be fixed. The database was last updated in September 2007. The HIV immunology website contains the same tools, and may be usable for non-HCV-specific analyses. For new epitope information, users of this database can try the Immuno Epitope Database (http://www.immuneepitope.org).
Proper citation: HCV Immunology Database (RRID:SCR_007086) Copy
http://patricbrc.vbi.vt.edu/portal/portal/patric/IncumbentBRCs?page=eric
ERIC is a resource of annotated enterobacterial genomes. Information is available and accessed through a open web portal uniting biological data and analysis tools. ERIC contains information on Escherichia, Shigella, Salmonella, Yersinia, and other microorgansims. ERIC has recently been moved over to PATRIC: The PATRIC BRC is now responsible for all bacterial species in the NIAID Category A-C Priority Pathogen lists for biodefense research, and pathogens causing emerging/reemerging infectious diseases. For ERIC users, we understand that the resource was valuable to your work. As such, we will be doing our very best to create a useful PATRIC resource to continue supporting your work. We realize that the transition will cause disruptions. However, it is a priority for us to work with established BRC users and communities to identify and prioritize our transition efforts. We have concentrated on the transfer of genomic data for this initial release. We anticipate adding new data, tools, and website features over the next several months. We look forward to working with you during the next 5 years., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: ERIC (RRID:SCR_007644) Copy
http://www.nmpdr.org/FIG/wiki/view.cgi
The National Microbial Pathogen Data Resource provides curated annotations in an environment for comparative analysis of genomes and biological subsystems, with an emphasis on the food-borne pathogens Campylobacter, Listeria, Staphylococcus, Streptococcus, and Vibrio; as well as the STD pathogens Chlamydiaceae, Haemophilus, Mycoplasma, Neisseria, Treponema, and Ureaplasma. This edition of the NMPDR includes 47 archaeal, 725 bacterial, and 29 eukaryal genomes with 3,257,100 genetic features, of which 1,338,895 are in FIGfams curated using 616 active subsystems. ''''''Notice to NMPDR Users'''''' - The NMPDR BRC contract ended in December 2009. At that time we ceased maintenance of the NMPDR web resource and data. Bacterial data from NMPDR has been transferred to PATRIC (http://www.patricbrc.org), a new consolidated BRC for all NIAID category A-C priority pathogenic bacteria. NMPDR was a collaboration among researchers from the Computation Institute of the University of Chicago, the Fellowship for Interpretation of Genomes (FIG), Argonne National Laboratory, and the National Center for Supercomputing Applications (NCSA) at the University of Illinois.
Proper citation: NMPDR (RRID:SCR_007821) Copy
https://repository.niddk.nih.gov/study/21
Data and biological samples were collected by this consortium organizing international efforts to identify genes that determine an individual risk of type 1 diabetes. It originally focused on recruiting families with at least two siblings (brothers and/or sisters) who have type 1 diabetes (affected sibling pair or ASP families). The T1DGC completed enrollment for these families in August 2009. They completed enrollment of trios (father, mother, and a child with type 1 diabetes), as well as cases (people with type 1 diabetes) and controls (people with no history of type 1 diabetes) from populations with a low prevalence of this disease in January 2010. T1DGC Data and Samples: Phenotypic and genotypic data as well as biological samples (DNA, serum and plasma) for T1DGC participants have been deposited in the NIDDKCentral Repositories for future research.
Proper citation: Type 1 Diabetes Genetics Consortium (RRID:SCR_001557) Copy
http://www.immunetolerance.org/
International clinical research consortium dedicated to the clinical evaluation of novel tolerogenic approaches for the treatment of autoimmune diseases, asthma and allergic diseases, and the prevention of graft rejection. They aim to advance the clinical application of immune tolerance by performing high quality clinical trials of emerging therapeutics integrated with mechanism-based research. In particular, they aim to: * Establish new tolerance therapeutics * Develop a better understanding of the mechanisms of immune function and disease pathogenesis * Identify new biomarkers of tolerance and disease Their goals are to identify and develop treatment game changers for tolerance modulating therapies for the treatment of immune mediated diseases and disabling conditions, and to conduct high quality, innovative clinical trials and mechanistic studies not likely to be funded by other sources or to be conducted by private industry that advance our understanding of immunological disorders. In the Immune Tolerance Network's (ITN) unique hybrid academic/industry model, the areas of academia, government and industry are integral to planning and conducting clinical studies. They develop and fund clinical trials and mechanistic studies in partnership. Their development model is a unique, interactive process. It capitalizes on their wide-ranging, multidisciplinary expertise provided by an advisory board of highly respected faculty from institutions worldwide. This model gives investigators special insight into developing high quality research studies. The ITN is comprised of leading scientific and medical faculty from more than 50 institutions in nine countries worldwide and employs over 80 full-time staff at the University of California San Francisco (UCSF), Bethesda, Maryland and Benaroya Research Institute in Seattle, Washington.
Proper citation: Immune Tolerance Network (ITN) (RRID:SCR_001535) Copy
http://www.niaid.nih.gov/topics/alps/Pages/default.aspx
A disease-related portal about Autoimmune Lymphoproliferative Syndrome (ALPS) including research in the following categories: Medical and Genetic Description, Database of Mutations, Database of ALPS-FAS Mutations, and Molecular Pathways. Autoimmune Lymphoproliferative Syndrome (ALPS) is a recently recognized disease in which a genetic defect in programmed cell death, or apoptosis, leads to breakdown of lymphocyte homeostasis and normal immunologic tolerance. It is an inherited disorder of the immune system that affects both children and adults. In ALPS, unusually high numbers of white blood cells called lymphocytes accumulate in the lymph nodes, liver, and spleen, which can lead to enlargement of these organs. Database of Mutations * All existing ALPS-FAS mutations (NIH Web site) * ALPS-FAS * ALPS Type Ia (most common type) ** Reported FAS (TNFRSF6) mutations causing ALPS ** Distribution of FAS (TNFRSF6) mutations ** FAS (TNFRSF6) polymorphisms * ALPS Type II
Proper citation: Autoimmune Lymphoproliferative Syndrome Information (RRID:SCR_006451) Copy
https://www.fludb.org/brc/home.spg?decorator=influenza
The Influenza Research Database (IRD) serves as a public repository and analysis platform for flu sequence, experiment, surveillance and related data.
Proper citation: Influenza Research Database (IRD) (RRID:SCR_006641) Copy
http://www.autoimmunitycenters.org/
Nine centers that conduct clinical trials and basic research on new immune-based therapies for autoimmune diseases. This program enhances interactions between scientists and clinicians in order to accelerate the translation of research findings into medical applications. By promoting better coordination and communication, and enabling limited resources to be pooled, ACEs is one of NIAID''''s primary vehicles for both expanding our knowledge and improving our ability to effectively prevent and treat autoimmune diseases. This coordinated approach incorporates key recommendations of the NIH Autoimmune Diseases Research Plan and will ensure progress in identifying new and highly effective therapies for autoimmune diseases. ACEs is advancing the search for effective treatments through: * Diverse Autoimmunity Expertise Medical researchers at ACEs include rheumatologists, neurologists, gastroenterologists, and endocrinologists who are among the elite in their respective fields. * Strong Mechanistic Foundation ACEs augment each clinical trial with extensive basic studies designed to enhance understanding of the mechanisms responsible for tolerance initiation, maintenance, or loss, including the role of cytokines, regulatory T cells, and accessory cells, to name a few. * Streamlined Patient Recruitment The cooperative nature of ACEs helps scientists recruit patients from distinct geographical areas. The rigorous clinical and basic science approach of ACEs helps maintain a high level of treatment and analysis, enabling informative comparisons between patient groups.
Proper citation: Autoimmunity Centers of Excellence (RRID:SCR_006510) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the SPARC SAWG Resources search. From here you can search through a compilation of resources used by SPARC SAWG and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that SPARC SAWG has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on SPARC SAWG then you can log in from here to get additional features in SPARC SAWG such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into SPARC SAWG you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within SPARC SAWG that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.