Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023.Digital collection of images, with themes ranging from medical and social history to contemporary healthcare and biomedical science. The collection contains historical images from the Wellcome Library collections, Tibetan Buddhist paintings, ancient Sanskrit manuscripts written on palm leaves, beautifully illuminated Persian books and much more. The Biomedical Collection holds over 40 000 high-quality images from the clinical and biomedical sciences. Selected from the UK''s leading teaching hospitals and research institutions, it covers disease, surgery, general healthcare, sciences from genetics to neuroscience including the full range of imaging techniques. They are always looking for new high quality biomedical images from scientific researchers, clinical photographers and artists in any field of science or medicine. As a contributor you retain your original material and copyright, and receive commission and full credit each time your images are used. The annual Wellcome Images awards (previously known as Biomedical Images Awards) reward contributors for their outstanding work and winners are chosen by a panel of experts. The resulting public exhibitions are always extremely popular and receive widespread acclaim. All images on the Wellcome Images site are available free for use in: * private study and non-commercial research * examination papers * criticism and review, this applies only where there are no multiple copies made * theses submitted by a student at a higher or further education institution for the purposes of securing a degree * personal use by private individuals
Proper citation: Wellcome Images (RRID:SCR_004181) Copy
http://www.sanger.ac.uk/resources/software/act/
A free tool for displaying pairwise comparisons between two or more DNA sequences. It can be used to identify and analyze regions of similarity and difference between genomes and to explore conservation of synteny, in the context of the entire sequences and their annotation. It is based on the software for Artemis, the genome viewer and annotation tool. ACT runs on UNIX, GNU/Linux, Macintosh and MS Windows systems. It can read complete EMBL and GENBANK entries or sequences in FASTA or raw format. Other sequence features can be in EMBL, GENBANK or GFF format.
Proper citation: ACT: Artemis Comparison Tool (RRID:SCR_004507) Copy
Non-profit academic organization for research and services in bioinformatics. Provides freely available data from life science experiments, performs basic research in computational biology, and offers user training programme, manages databases of biological data including nucleic acid, protein sequences, and macromolecular structures. Part of EMBL.
Proper citation: European Bioinformatics Institute (RRID:SCR_004727) Copy
http://www.genedb.org/Homepage/Tbruceibrucei927
Database of the most recent sequence updates and annotations for the T. brucei genome. New annotations are constantly being added to keep up with published manuscripts and feedback from the Trypanosomatid research community. You may search by Protein Length, Molecular Mass, Gene Type, Date, Location, Protein Targeting, Transmembrane Helices, Product, GO, EC, Pfam ID, Curation and Comments, and Dbxrefs. BLAST and other tools are available. T. brucei possesses a two-unit genome, a nuclear genome and a mitochondrial (kinetoplast) genome with a total estimated size of 35Mb/haploid genome. The nuclear genome is split into three classes of chromosomes according to their size on pulsed-field gel electrophoresis, 11 pairs of megabase chromosomes (0.9-5.7 Mb), intermediate (300-900 kb) and minichromosomes (50-100 kb). The T. brucei genome contains a ~0.5Mb segmental duplication affecting chromosomes 4 and 8, which is responsible for some 75 gene duplicates unique to this species. A comparative chromosome map of the duplicons can be accessed here (PubmedID 18036214). Protozoan parasites within the species Trypanosoma brucei are the etiological agent of human sleeping sickness and Nagana in animals. Infections are limited to patches of sub-Saharan Africa where insects vectors of the Glossina genus are endemic. The most recent estimates indicate between 50,000 - 70,000 human cases currently exist, with 17 000 new cases each year (WHO Factsheet, 2006). In collaboration with GeneDB, the EuPathDB genomic sequence data and annotations are regularly deposited on TriTrypDB where they can be integrated with other datasets and queried using customized queries.
Proper citation: GeneDB Tbrucei (RRID:SCR_004786) Copy
An international leader in genetics, genomics and structural biology, and research institute of the Nuffield Department of Medicine at the University of Oxford, whose objective is to extend our understanding on how genetic inheritance makes us who we are in order to gain a clearer insight into mechanisms of health and disease. Looking across all three billion letters of the human genetic code, they aim to pinpoint variant spellings and discover how they increase or decrease an individual's risk of falling ill. They collaborate with research teams across the world on a number of large-scale studies in these areas.
Proper citation: Wellcome Trust Centre for Human Genetics (RRID:SCR_003307) Copy
Centralized, standards compliant, public data repository for proteomics data, including protein and peptide identifications, post-translational modifications and supporting spectral evidence. Originally it was developed to provide a common data exchange format and repository to support proteomics literature publications. This remit has grown with PRIDE, with the hope that PRIDE will provide a reference set of tissue-based identifications for use by the community. The future development of PRIDE has become closely linked to HUPO PSI. PRIDE encourages and welcomes direct user submissions of protein and peptide identification data to be published in peer-reviewed publications. Users may Browse public datasets, use PRIDE BioMart for custom queries, or download the data directly from the FTP site. PRIDE has been developed through a collaboration of the EMBL-EBI, Ghent University in Belgium, and the University of Manchester.
Proper citation: Proteomics Identifications (PRIDE) (RRID:SCR_003411) Copy
Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.
Proper citation: SAMTOOLS (RRID:SCR_002105) Copy
http://www.genedb.org/Homepage
Database of genomes at various stages of completion, from early access to partial genomes with automatic annotation through to complete genomes with extensive manual curation. Its primary goals are: 1) to provide reliable access to the latest sequence data and annotation/curation for the whole range of organisms sequenced by the Pathogen group, and 2) to develop the website and other tools to aid the community in accessing and obtaining the maximum value from these data.
Proper citation: GeneDB (RRID:SCR_002774) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 14,2026. Integrated database of genomic, expression and protein data for Drosophila, Anopheles, C. elegans and other organisms. You can run flexible queries, export results and analyze lists of data. FlyMine presents data in categories, with each providing information on a particular type of data (for example Gene Expression or Protein Interactions). Template queries, as well as the QueryBuilder itself, allow you to perform searches that span data from more than one category. Advanced users can use a flexible query interface to construct their own data mining queries across the multiple integrated data sources, to modify existing template queries or to create your own template queries. Access our FlyMine data via our Application Programming Interface (API). We provide client libraries in the following languages: Perl, Python, Ruby and & Java API
Proper citation: FlyMine (RRID:SCR_002694) Copy
An open source data warehouse system built for the integration and analysis of complex biological data that enables the creation of biological databases accessed by sophisticated web query tools. Parsers are provided for integrating data from many common biological data sources and formats, and there is a framework for adding data. InterMine includes a user-friendly web interface that works "out of the box" and can be easily customized for specific needs, as well as a powerful, scriptable web-service API to allow programmatic access to data.
Proper citation: InterMine (RRID:SCR_001772) Copy
Consortium of 50 research groups across the UK to harness the power of newly-available genotyping technologies to improve our understanding of the aetiological basis of several major causes of global disease. The consortium has gathered genotype data for up to 500,000 sites of genome sequence variation (single nucleotide polymorphisms or SNPs) in samples ascertained for the disease phenotypes. Analysis of the genome-wide association data generated has lead to the identification of many SNPs and genes showing evidence of association with disease susceptibility, some of which will be followed up in future studies. In addition, the Consortium has gained important insights into the technical, analytical, methodological and biological aspects of genome-wide association analysis. The core of the study comprised an analysis of 2,000 samples from each of seven diseases (type 1 diabetes, type 2 diabetes, coronary heart disease, hypertension, bipolar disorder, rheumatoid arthritis and Crohn's disease). For each disease, the case samples have been ascertained from sites widely distributed across Great Britain, allowing us to obtain considerable efficiencies by comparing each of these case populations to a common set of 3,000 nationally-ascertained controls also from England, Scotland and Wales. These controls come from two sources: 1,500 are representative samples from the 1958 British Birth Cohort and 1,500 are blood donors recruited by the three national UK Blood Services. One of the questions that the WTCCC study has addressed relates to the relative merits of these alternative strategies for the generation of representative population cohorts. Genotyping for this main Case Control study was conducted by Affymetrix using the (commercial) Affymetrix 500K chip. As part of this study a total of 17,000 samples were typed for 500,000 SNPs. There are two additional components to the study. First, the WTCCC award is part-funding a study of host resistance to infectious diseases in African populations. The same approach has been used to type 2,000 cases of tuberculosis (TB) and 2,000 cases of malaria, as well as 2,000 shared controls. As well as addressing diseases of major global significance, and extending WTCCC coverage into the area of infectious disease, the inclusion of samples of African origin has obvious benefits with respect to methodological aspects of genome-wide association analysis. Second, the WTCCC has, for four additional diseases (autoimmune thyroid disease, breast cancer, ankylosing spondylitis, multiple sclerosis), completed an analysis of 15,000 SNPs designed to represent a large proportion of the known non-synonymous coding SNPs across the genome. This analysis has been performed at the WTSI using a custom Infinium chip (Illumina). Data release The genotypic data of the control samples (1958 British Birth Cohort and UK Blood Service) and from seven diseases analyzed in the main study are now available to qualified researchers. Summary genotype statistics for these collections are available directly from the website. Access to the individual-level genotype data and summary genotype statistics is by application to the Consortium Data Access Committee (CDAC) and approval subject to a Data Access Agreement. WTCCC2: A further round of GWA studies were funded in April 2008. These include 15 WTCCC-collaborative studies and 12 independent studies be supported totaling approximately 120,000 samples. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC2 will perform genome-wide association studies in 13 disease conditions: Ankylosing spondylitis, Barrett's oesophagus and oesophageal adenocarcinoma, glaucoma, ischaemic stroke, multiple sclerosis, pre-eclampsia, Parkinson's disease, psychosis endophenotypes, psoriasis, schizophrenia, ulcerative colitis and visceral leishmaniasis. WTCCC2 will also investigate the genetics of reading and mathematics abilities in children and the pharmacogenomics of statin response. Over 60,000 samples will be analyzed using either the Affymetrix v6.0 chip or the Illumina 660K chip. The WTCCC2 will also genotype 3,000 controls each from the 1958 British Birth cohort and the UK Blood Service control group, and the 6,000 controls will be genotyped on both the Affymetrix v6.0 and Illumina 1.2M chips. WTCCC3: The Wellcome Trust has provided support for a further round of GWA studies in January 2009. These include 5 WTCCC-collaborative studies to be carried out in WTCCC3 and 5 independent studies, across a range of diseases. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC3 will perform genome-wide association studies in the following 4 disease conditions: primary biliary cirrhosis, anorexia nervosa, pre-eclampsia in UK subjects, and the interactions between donor and recipient DNA related to early and late renal transplant dysfunction. The WTCCC3 will also carry out a pilot in a study of the genetics of host control of HIV-1 infection. Over 40,000 samples will be analyzed using the Illumina 660K chip. The WTCCC3 will utilize the 6,000 control genotypes generated by the WTCCC2.
Proper citation: Wellcome Trust Case Control Consortium (RRID:SCR_001973) Copy
A Graphical User Interface for NEURON simulator environment with 3D capabilities. Neuronvisio makes easy to select and investigate sections'''' properties and it offers easy integration with matplotlib for plotting the results. The geometry can be saved using NeuroML and the computational results in a customized and extensible HDF5 format; the results can then be reload in the software and analyzed in a later stage, without re-running the simulation. Featuring 3D visualization of the model with the possibility to change it runtime; creation of vectors to record any variables present in the section; pylab integration to plot directly the result of the simulation; exploration of the timecourse of any variable among time using a color coded scale; saving the results simulation for later analysis; automatic download and running of models in ModelDB.
Proper citation: NeuronVisio (RRID:SCR_006839) Copy
http://www.port.ac.uk/research/exrc/
Supports researchers using Xenopus models. Researchers are encouraged to deposit Xenopus transgenic and mutant lines, Xenopus in situ hybridization probes, Xenopus specific antibodies and Xenopus expression clones with the Centre. EXRC staff perform quality assurance testing on these reagents and then make them available to researchers at cost. Supplies wild-type Xenopus, embryos, oocytes and Xenopus tropicalis fosmids.
Proper citation: European Xenopus Resource Center (RRID:SCR_007164) Copy
http://www.neuroconstruct.org/
Software for simulating complex networks of biologically realistic neurons, i.e. models incorporating dendritic morphologies and realistic cell membrane conductance, implemented in Java and generates script files for the NEURON and GENESIS simulators, with support for other simulation platforms (including PSICS and PyNN) in development. neuroConstruct is being developed in the Silver Lab in the Department of Neuroscience, Physiology and Pharmacology at UCL and uses the latest NeuroML specifications, including MorphML, ChannelML and NetworkML. Some of the key features of neuroConstruct are: Creation of networks of biologically realistic neurons, positioned in 3D space. Complex connectivity patterns between cell groups can be specified for the networks. Can import morphology files in GENESIS, NEURON, Neurolucida, SWC and MorphML format for inclusion in network models. Simulations can be run on the NEURON or GENESIS platforms. Cellular processes (synapses/channel mechanisms) can be imported from native script files or created in ChannelML. Recording of simulation data generated by the simulation and visualization/analysis of data. Stored simulation runs can be viewed and managed through the Simulation Browser interface.
Proper citation: neuroConstruct (RRID:SCR_007197) Copy
http://www.genes2cognition.org/
A neuroscience research program that studies genes, the brain and behavior in an integrated manner, established to elucidate the molecular mechanisms of learning and memory, and shed light on the pathogenesis of disorders of cognition. Central to G2C investigations is the NMDA receptor complex (NRC/MASC), that is found at the synapses in the central nervous system which constitute the functional connections between neurons. Changes in the receptor and associated components are thought to be in a large part responsible for the phenomenon of synaptic plasticity, that may underlie learning and memory. G2C is addressing the function of synapse proteins using large scale approaches combining genomics, proteomics and genetic methods with electrophysiological and behavioral studies. This is incorporated with computational models of the organization of molecular networks at the synapse. These combined approaches provide a powerful and unique opportunity to understand the mechanisms of disease genes in behavior and brain pathology as well as provide fundamental insights into the complexity of the human brain. Additionally, Genes to Cognition makes available its biological resources, including gene-targeting vectors, ES cell lines, antibodies, and transgenic mice, generated for its phenotyping pipeline. The resources are freely-available to interested researchers.
Proper citation: Genes to Cognition: Neuroscience Research Programme (RRID:SCR_007121) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 26,2019. In October 2016, T1DBase has merged with its sister site ImmunoBase (https://immunobase.org). Documented on March 2020, ImmunoBase ownership has been transferred to Open Targets (https://www.opentargets.org). Results for all studies can be explored using Open Targets Genetics (https://genetics.opentargets.org). Database focused on genetics and genomics of type 1 diabetes susceptibility providing a curated and integrated set of datasets and tools, across multiple species, to support and promote research in this area. The current data scope includes annotated genomic sequences for suspected T1D susceptibility regions; genetic data; microarray data; and global datasets, generally from the literature, that are useful for genetics and systems biology studies. The site also includes software tools for analyzing the data.
Proper citation: T1DBase (RRID:SCR_007959) Copy
The Rfam database is a collection of RNA families, each represented by multiple sequence alignments, consensus secondary structures and covariance models (CMs). The families in Rfam break down into three broad functional classes: Non-coding RNA genes, structured cis-regulatory elements and self-splicing RNAs. Typically these functional RNAs often have a conserved secondary structure which may be better preserved than the RNA sequence. The CMs used to describe each family are a slightly more complicated relative of the profile hidden Markov models (HMMs) used by Pfam. CMs can simultaneously model RNA sequence and the structure in an elegant and accurate fashion. Rfam is also available via FTP. You can find data in Rfam in various ways... * Analyze your RNA sequence for Rfam matches * View Rfam family annotation and alignments * View Rfam clan details * Query Rfam by keywords * Fetch families or sequences by NCBI taxonomy * Enter any type of accession or ID to jump to the page for a Rfam family, sequence or genome
Proper citation: Rfam (RRID:SCR_007891) Copy
The Burroughs Wellcome Fund is an independent private foundation dedicated to advancing the biomedical sciences by supporting research and other scientific and educational activities. Within this broad mission, BWF has two primary goals: * To help scientists early in their careers develop as independent investigators * To advance fields in the basic biomedical sciences that are undervalued or in need of particular encouragement BWF''s financial support is channeled primarily through competitive peer-reviewed award programs. * BWF''s endowment: $586.8 million at the end of FY 2009 * BWF approved $26.4 million in grants during FY 2009 BWF makes grants primarily to degree-granting institutions on behalf of individual researchers, who must be nominated by their institutions. To complement these competitive award programs, BWF also makes grants to nonprofit organizations conducting activities intended to improve the general environment for science. A Board of Directors comprising distinguished scientists and business leaders governs BWF. BWF was founded in 1955 as the corporate foundation of the pharmaceutical firm Burroughs Wellcome Co. In 1993, a generous gift from the Wellcome Trust in the United Kingdom, enabled BWF to become fully independent from the company, which was acquired by Glaxo in 1995. BWF has no affiliation with any corporation.
Proper citation: Burroughs Wellcome Fund (RRID:SCR_005772) Copy
http://dictybase.org/Dicty_Info/dicty_anatomy_ontology.html
An ontology to describe Dictyostelium where the structural makeup of Dictyostelium and its composing parts including the different cell types, throughout its life cycle is defined. There are two main goals for this new tool: (1) promote the consistent annotation of Dictyostelium-specific events, such as phenotypes (already in use), and in the future, of gene expression information; and (2) encourage researchers to use the same terms with the same intended meaning. To this end, all terms are defined. The complete ontology can be browsed using EBI''s ontology browser tool. (http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=DDANAT)
Proper citation: Dictyostelium Anatomy Ontology (RRID:SCR_005929) Copy
http://www.nematodes.org/nembase4/
NEMBASE is a comprehensive Nematode Transcriptome Database including 63 nematode species, over 600,000 ESTs and over 250,000 proteins. Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. An example of the utility of NEMBASE4 is that it can examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.
Proper citation: NEMBASE (RRID:SCR_006070) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.