Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
THIS RESOURCE IS NO LONGER IN SERVICE, documented on March 28, 2017. Foundation that helps junior physicians and neuroscientists continue their research on Parkinson's Disease and related disorders, with financial support for professional and intellectual development. It promotes an international community of researchers, focusing on the young enthusiastic investigators and clinicians who might otherwise be forced to abandon their ideas and efforts.
Proper citation: Melvin Yahr International Parkinson's Disease Foundation (RRID:SCR_001652) Copy
A not-for-profit, volunteer based charity whose purpose is to find a cure for Parkinson's disease through research, advocacy, education and support services. Parkinson Society Canadas leads initiatives that include: raising funds for research through national events; funding research, movement disorder clinics, and outreach programs across Canada; staffing a national Information and Referral Centre; developing educational and information materials; providing up to date detailed information about Parkinson's disease; and providing support for regional partners to better meet the needs of people living with Parkinson's services. Researchers can apply for various funding awards and fellowships by following the funding process outlined by Parkinson Society Canada.
Proper citation: Parkinson Society Canada (RRID:SCR_002014) Copy
Consortium of 50 research groups across the UK to harness the power of newly-available genotyping technologies to improve our understanding of the aetiological basis of several major causes of global disease. The consortium has gathered genotype data for up to 500,000 sites of genome sequence variation (single nucleotide polymorphisms or SNPs) in samples ascertained for the disease phenotypes. Analysis of the genome-wide association data generated has lead to the identification of many SNPs and genes showing evidence of association with disease susceptibility, some of which will be followed up in future studies. In addition, the Consortium has gained important insights into the technical, analytical, methodological and biological aspects of genome-wide association analysis. The core of the study comprised an analysis of 2,000 samples from each of seven diseases (type 1 diabetes, type 2 diabetes, coronary heart disease, hypertension, bipolar disorder, rheumatoid arthritis and Crohn's disease). For each disease, the case samples have been ascertained from sites widely distributed across Great Britain, allowing us to obtain considerable efficiencies by comparing each of these case populations to a common set of 3,000 nationally-ascertained controls also from England, Scotland and Wales. These controls come from two sources: 1,500 are representative samples from the 1958 British Birth Cohort and 1,500 are blood donors recruited by the three national UK Blood Services. One of the questions that the WTCCC study has addressed relates to the relative merits of these alternative strategies for the generation of representative population cohorts. Genotyping for this main Case Control study was conducted by Affymetrix using the (commercial) Affymetrix 500K chip. As part of this study a total of 17,000 samples were typed for 500,000 SNPs. There are two additional components to the study. First, the WTCCC award is part-funding a study of host resistance to infectious diseases in African populations. The same approach has been used to type 2,000 cases of tuberculosis (TB) and 2,000 cases of malaria, as well as 2,000 shared controls. As well as addressing diseases of major global significance, and extending WTCCC coverage into the area of infectious disease, the inclusion of samples of African origin has obvious benefits with respect to methodological aspects of genome-wide association analysis. Second, the WTCCC has, for four additional diseases (autoimmune thyroid disease, breast cancer, ankylosing spondylitis, multiple sclerosis), completed an analysis of 15,000 SNPs designed to represent a large proportion of the known non-synonymous coding SNPs across the genome. This analysis has been performed at the WTSI using a custom Infinium chip (Illumina). Data release The genotypic data of the control samples (1958 British Birth Cohort and UK Blood Service) and from seven diseases analyzed in the main study are now available to qualified researchers. Summary genotype statistics for these collections are available directly from the website. Access to the individual-level genotype data and summary genotype statistics is by application to the Consortium Data Access Committee (CDAC) and approval subject to a Data Access Agreement. WTCCC2: A further round of GWA studies were funded in April 2008. These include 15 WTCCC-collaborative studies and 12 independent studies be supported totaling approximately 120,000 samples. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC2 will perform genome-wide association studies in 13 disease conditions: Ankylosing spondylitis, Barrett's oesophagus and oesophageal adenocarcinoma, glaucoma, ischaemic stroke, multiple sclerosis, pre-eclampsia, Parkinson's disease, psychosis endophenotypes, psoriasis, schizophrenia, ulcerative colitis and visceral leishmaniasis. WTCCC2 will also investigate the genetics of reading and mathematics abilities in children and the pharmacogenomics of statin response. Over 60,000 samples will be analyzed using either the Affymetrix v6.0 chip or the Illumina 660K chip. The WTCCC2 will also genotype 3,000 controls each from the 1958 British Birth cohort and the UK Blood Service control group, and the 6,000 controls will be genotyped on both the Affymetrix v6.0 and Illumina 1.2M chips. WTCCC3: The Wellcome Trust has provided support for a further round of GWA studies in January 2009. These include 5 WTCCC-collaborative studies to be carried out in WTCCC3 and 5 independent studies, across a range of diseases. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC3 will perform genome-wide association studies in the following 4 disease conditions: primary biliary cirrhosis, anorexia nervosa, pre-eclampsia in UK subjects, and the interactions between donor and recipient DNA related to early and late renal transplant dysfunction. The WTCCC3 will also carry out a pilot in a study of the genetics of host control of HIV-1 infection. Over 40,000 samples will be analyzed using the Illumina 660K chip. The WTCCC3 will utilize the 6,000 control genotypes generated by the WTCCC2.
Proper citation: Wellcome Trust Case Control Consortium (RRID:SCR_001973) Copy
Brain bank that harvests, banks and disperses postmortem tissue for use in brain and medical research. It also provides neuropathologic diagnoses of organic dementia in a cohort of NIH sponsored research subjects. The bank includes tissue primarily from patients with Alzheimer's but also includes Huntington's, Parkinson's, and other disorders.
Proper citation: Oregon Brain Bank (RRID:SCR_013085) Copy
http://www.eurobiobank.org/en/partners/description/inncb_copy.htm#organisation
A biobank of human biological material and genetic information. It provides samples and information to researchers in order to identify new genes and clarify pathogenic mechanisms of diseases. The biobank offers biochemical and molecular diagnoses of genetic dystonias, Parkinson's disease and NBIA disorders, as well as storage of biological samples for external institutions.
Proper citation: Movement Disorders Biobank (RRID:SCR_010659) Copy
A biomaterial supply resource which supplies brain tissue for researchers studying dementia and other neurodegenerative diseases. The Maritime Brain Tissue Bank archives tissues related to Alzheimer's Disease, mixed dementias, Lewy Body Disease, and Huntington's Disease, among others.
Proper citation: Maritime Brain Tissue Bank (RRID:SCR_013838) Copy
A cell repository containing cells and DNA for studies of aging and the degenerative processes associated with it. Scientists use the highly-characterized, viable, and contaminant-free cell cultures from this collection for research on such diseases as Alzheimer's disease, progeria, Parkinson's disease, Werner syndrome, and Cockayne syndrome. The collections of the Repository include DNA and cell cultures from individuals with premature aging disorders, as well as DNA from individuals of advanced age from the the Baltimore Longitudinal Study of Aging at the Gerontology Research Center and other Longevity Collections. The Repository also includes samples from an Adolescent Study of Obesity, Apparently Healthy Controls, Animal Models of Aging, and both human and animal differentiated cell types. The cells in this resource have been collected over the past three decades using strict diagnostic criteria and banked under the highest quality standards of cell culture. Scientists can use the highly-characterized, viable, and contaminant-free cell cultures from this collection for genetic and cell biology research.
Proper citation: Aging Cell Repository (RRID:SCR_007320) Copy
http://ki.se/en/research/spotlight-on-parkinsons-disease
The primary purpose is to assess the importance of environmental factors for Parkinson's Disease (PD) in a population-based sample of Swedish twins. In PD discordant twin pairs, what are the environmental factors that contribute to the disease in the affected twin and or protect the unaffected twin? Second, we want to investigate whether the earlier reports of low heritability for elderly male twins can be confirmed for female pairs. All twins 55 years of age and older in the Swedish Twin Registry have been screened for most complex diseases. 626 twins have screened positive for PD and most pairs are discordant. To establish diagnosis, a physician will examine all potential cases and their co-twins and their medical records will be reviewed. Environmental factors will be studied through the use of discordant pairs, where genetic susceptibility to the disease can be controlled. Environmental exposures are being secured with telephone interviews and from a questionnaire collected 30 years ago. Recent results indicate that genetic factors play a very small role. A better understanding of the etiology of PD is important for the possibility of delaying onset or even preventing the disease, as well as for providing guidance for molecular biology studies. Types of samples * DNA Number of sample donors: 333 (sample collection completed)
Proper citation: KI Biobank - Parkinson (RRID:SCR_008866) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 4, 2023.Consortium that developed brief, standardized and reliable procedures for the evaluation and diagnosis of patients with Alzheimer's disease (AD) and other dementias of the elderly. These procedures included data forms, flipbooks, guidebooks, brochures, instruction manuals and demonstration tapes, which are now available for purchase. The CERAD assessment material can be used for research purposes as well as for patient care. CERAD has developed several basic standardized instruments, each consisting of brief forms designed to gather data on normal persons as well as on cognitively impaired or behaviorally disturbed individuals. Such data permit the identification of dementia based on clinical, neuropsychological, behavioral or neuropathological criteria. Staff at participating CERAD sites were trained and certified to administer the assessment instruments and to evaluate the subjects enrolled in the study. Cases and controls were evaluated at entry and annually thereafter including (when possible) autopsy examination of the brain to track the natural progression of AD and to obtain neuropathological confirmation of the clinical diagnosis. The CERAD database has become a major resource for research in Alzheimer's disease. It contains longitudinal data for periods as long as seven years on the natural progression of the disorder as well as information on clinical and neuropsychological changes and neuropathological manifestations., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: CERAD - Consortium to Establish a Registry for Alzheimer's Disease (RRID:SCR_003016) Copy
http://ccr.coriell.org/Sections/Collections/NINDS/?SsId=10
Open resource of biological samples (DNA, cell lines, and other biospecimens) and corresponding phenotypic data to promote neurological research. Samples from more than 34,000 unique individuals with cerebrovascular disease, dystonia, epilepsy, Huntington's Disease, motor neuron disease, Parkinsonism, and Tourette Syndrome, as well as controls (population control and unaffected relatives) have been collected. The mission of the NINDS Repository is to provide 1) genetics support for scientists investigating pathogenesis in the central and peripheral nervous systems through submissions and distribution; 2) information support for patients, families, and advocates concerned with the living-side of neurological disease and stroke.
Proper citation: NINDS Repository (RRID:SCR_004520) Copy
http://www.cnsforum.com/educationalresources/imagebank/
A collection of downloadable central nervous system (CNS) images for teaching, presentations, articles, and other purposes. The following major categories of images are as follows: Brain anatomy, Brain physiology, Anxiety, Depression, Schizophrenia, Dementia, Parkinson's disease, Stroke, and Others.
Proper citation: CNSforum: Image Bank (RRID:SCR_002718) Copy
http://www.brainbank.mclean.org/
Biomaterial supply resource that acquires, processes, stores, and distributes postmortem brain specimens for brain research. Various types of brain tissue are collected, including those with neurological and psychiatric disorders, along with their parents, siblings and offspring. The HBTRC maintains an extensive collection of postmortem human brains from individuals with Huntington's chorea, Alzheimer's disease, Parkinson's disease, and other neurological disorders. In addition, the HBTRC also has a collection of normal-control specimens.
Proper citation: Harvard Brain Tissue Resource Center (RRID:SCR_003316) Copy
http://www.loni.usc.edu/BIRN/Projects/Mouse/
Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.
Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy
http://national_databank.mclean.org
THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. A publicly accessible data repository to provide neuroscience investigators with secure access to cohort collections. The Databank collects and disseminates gene expression data from microarray experiments on brain tissue samples, along with diagnostic results from postmortem studies of neurological and psychiatric disorders. All of the data that is derived from studies of the HBTRC collection is being incorporated into the National Brain Databank. This data is available to the general public, although strict precautions are undertaken to maintain the confidentiality of the brain donors and their family members. The system is designed to incorporate MIAME and MAGE-ML based microarray data sharing standards. Data from various types of studies conducted on brain tissue in the HBTRC collection will be available from studies using different technologies, such as gene expression profiling, quantitative RT-PCR, situ hybridization, and immunocytochemistry and will have the potential for providing powerful insights into the subregional and cellular distribution of genes and/or proteins in different brain regions and eventually in specific subregions and cellular subtypes.
Proper citation: National Brain Databank (RRID:SCR_003606) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 31, 2016. The Laboratory of Experimental Neuropathology is engaged in the study of neurodegenerative disease, including Alzheimer's, Parkinson's, and the dementia of HIV encephalitis. It contains a large bank of materials available to fellow investigators including images, publications, and lab safety. Fellow Investigators and Collaborators may request materials from the brain bank. Technologies employed by the laboratory include immunocytochemistry, neurochemistry, molecular genetics, transgenic models of disease, and imaging by scanning laser confocal microscopy.
Proper citation: UCSD Experimental Neuropath Laboratory (RRID:SCR_004906) Copy
Portal touching on all aspects of neuroscience from molecules to the mind, from the laboratory bench to the patient's bedside. Members study the normal structure and workings of the nervous system, its development, its cognitive functions, its derangement by disease and injury, and the means of its repair and protection. Projects span traditional disciplinary boundaries, as do graduate and postdoctoral training programs. Its major achievement has been to foster and improve multidisciplinary collaborations which has increasingly permitted the identification of pathogenic mechanisms and the formulation of new therapeutic approaches.
Proper citation: Brain Research Institute (RRID:SCR_004988) Copy
https://www.bannerhealth.com/research/locations/sun-health-institute/programs/body-donation
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. An autopsy-based, research-devoted brain bank, biobank and biospecimen bank that derives its human donors from the Arizona Study of Aging and Neurodegenerative Disease (AZSAND), a longitudinal clinicopathological study of the health and diseases of elderly volunteers living in Maricopa county and metropolitan Phoenix, Arizona. Their function is studied during life and their organs and tissue after death. To date, they have concentrated their studies on Alzheimer's disease, Parkinson's disease, heart disease and cancer. They share the banked tissue, biomaterials and biospecimens with qualified researchers worldwide. Registrants with suitable scientific credentials will be allowed access to a database of available tissue linked to relevant clinical information, and will allow tissue requests to be initiated., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Brain and Body Donation Program (RRID:SCR_004822) Copy
A collection of images of the human nervous system focusing on disease and injury.
Proper citation: Human Nervous System Disease and Injury (RRID:SCR_006370) Copy
http://www.parkinsons.org.uk/content/parkinsons-uk-brain-bank
A brain bank of the United Kingdom which collects human brains for Parkinsons disease research. The collection is comprised of brain, spinal cord and a sample of cerebrospinal fluid from people with and without Parkinson's after death. Researchers can fill out a brain tissue request form to order samples from the bank.
Proper citation: Parkinsons UK Brain Bank (RRID:SCR_007030) Copy
http://www.physionet.org/physiobank/database/gaitdb/
A mini-collection of human gait data that was constructed as a teaching resource for an intensive course (The Modern Science of Human Aging, conducted at MIT) that includes walking stride interval time series from 15 subjects: 5 healthy young adults (23 - 29 years old), 5 healthy old adults (71 - 77 years old), and 5 older adults (60 - 77 years old) with Parkinson's disease. For each subject, two columns of data are included. The first column is time (in seconds) and the second is the stride interval (variously known as stride time, gait cycle duration, and time between successive heel strikes of the same foot). The same data are also available as standard PhysioBank-format annotation (.str) and header (.hea) files, for viewing or analysis using PhysioToolkit software from this site. Subjects walked continuously on level ground around an obstacle-free path. The stride interval was measured using ultra-thin, force sensitive resistors placed inside the shoe. The analog force signal was sampled at 300 Hz with a 12 bit A/D converter, using an ambulatory, ankle-worn microcomputer that also recorded the data. Subsequently, the time between foot-strikes was automatically computed. The method for determining the stride interval is a modification of a previously validated method that has been shown to agree with force-platform measures, a gold standard. Data were collected from the healthy subjects as they walked in a roughly circular path for 15 minutes, and from the subjects with Parkinson's disease as they walked for 6 minutes up and down a long hallway.
Proper citation: Gait in Aging and Disease Database (RRID:SCR_006886) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.