Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 109 results
Snippet view Table view Download 109 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_000792

http://www.rostlab.org/cms/

A lab organization which has bases in Munich, Germany and at Columbia University and focuses its research on protein structure and function using sequence and evolutionary information. They utilize machine learning and statistical methods to analyze genetic material and its gene products. Research goals of the lab involve using protein and DNA sequences along with evolutionary information to predict aspects of the proteins relevant to the advance of biomedical research.

Proper citation: ROSTLAB (RRID:SCR_000792) Copy   


  • RRID:SCR_004751

    This resource has 10+ mentions.

http://www.cbcb.umd.edu/software/phymm/

Software for Phylogenetic Classification of Metagenomic Data with Interpolated Markov Models to taxonomically classify DNA sequences and accurately classify reads as short as 100 bp. PhymmBL, the hybrid classifier included in this distribution which combines analysis from both Phymm and BLAST, produces even higher accuracy.

Proper citation: Phymm and PhymmBL (RRID:SCR_004751) Copy   


  • RRID:SCR_006627

    This resource has 1+ mentions.

https://wiki.nci.nih.gov/display/LexEVS/LexGrid

LexGrid (Lexical Grid) provides support for a distributed network of lexical resources such as terminologies and ontologies via standards-based tools, storage formats, and access/update mechanisms. The Lexical Grid Vision is for a distributed network of terminological resources. It is the foundation of the National Center for Biomedical Ontology BioPortal interface and web-services, and can parse OBO format, as well as other formats such as OWL. Currently, there are many terminologies and ontologies in existence. Just about every terminology has its own format, its own set of tools, and its own update mechanisms. The only thing that most of these pieces have in common with each other is their incompatibility. This makes it very hard to use these resources to their full potential. We have designed the Lexical Grid as a way to bridge terminologies and ontologies with a common set of tools, formats and update mechanisms. The Lexical Grid is: * accessible through a set of common APIs * joined through shared indices * online accessible * downloadable * loosely coupled * locally extendable * globally revised * available in web-space on web-time * cross-linked The realization of this vision requires three interlocking components, which are: * Standards - access methods and formats need to be published and openly available * Tools - standards based tools must be readily available * Content - commonly used terminologies have to be available for access and download Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: LexGrid (RRID:SCR_006627) Copy   


  • RRID:SCR_003299

    This resource has 100+ mentions.

http://protege.stanford.edu

Protege is a free, open-source platform that provides a growing user community with a suite of tools to construct domain models and knowledge-based applications with ontologies. At its core, Protege implements a rich set of knowledge-modeling structures and actions that support the creation, visualization, and manipulation of ontologies in various representation formats. Protege can be customized to provide domain-friendly support for creating knowledge models and entering data. Further, Protege can be extended by way of a plug-in architecture and a Java-based Application Programming Interface (API) for building knowledge-based tools and applications. An ontology describes the concepts and relationships that are important in a particular domain, providing a vocabulary for that domain as well as a computerized specification of the meaning of terms used in the vocabulary. Ontologies range from taxonomies and classifications, database schemas, to fully axiomatized theories. In recent years, ontologies have been adopted in many business and scientific communities as a way to share, reuse and process domain knowledge. Ontologies are now central to many applications such as scientific knowledge portals, information management and integration systems, electronic commerce, and semantic web services. The Protege platform supports two main ways of modeling ontologies: * The Protege-Frames editor enables users to build and populate ontologies that are frame-based, in accordance with the Open Knowledge Base Connectivity protocol (OKBC). In this model, an ontology consists of a set of classes organized in a subsumption hierarchy to represent a domain's salient concepts, a set of slots associated to classes to describe their properties and relationships, and a set of instances of those classes - individual exemplars of the concepts that hold specific values for their properties. * The Protege-OWL editor enables users to build ontologies for the Semantic Web, in particular in the W3C's Web Ontology Language (OWL). An OWL ontology may include descriptions of classes, properties and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. These entailments may be based on a single document or multiple distributed documents that have been combined using defined OWL mechanisms (see the OWL Web Ontology Language Guide). Protege is based on Java, is extensible, and provides a plug-and-play environment that makes it a flexible base for rapid prototyping and application development.

Proper citation: Protege (RRID:SCR_003299) Copy   


  • RRID:SCR_004854

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/biosample

Database containing descriptions of biological source materials used in experimental assays. Sources include: GenBank, Sequence Read Archive (SRA), Coriell, ATCC. Submissions are supported by a web-based Submission Portal that guides users through a series of forms for input of rich metadata describing their samples. As the capacity and complexity of biological data sets expands, databases face new challenges in ensuring that the information is adequately organized and described. The NCBI BioSample database is being developed to help address the challenges by providing the means by which data generators can organize and describe a broad range of sample types, and link to corresponding sets of experimental data in archival databases.

Proper citation: NCBI BioSample (RRID:SCR_004854) Copy   


  • RRID:SCR_000111

    This resource has 1+ mentions.

http://www.ncbi.nlm.nih.gov/medgen/

A database of organized information related to human medical genetics, such as attributes of conditions with a genetic contribution.

Proper citation: MedGen (RRID:SCR_000111) Copy   


http://atgc.lbl.gov/atgc/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. ATGC stands for Alignable Tight Genomic Cluster, which is cluster of closely related prokaryotic genomes. ATGC is the principal notion of this web resource. The purpose of this web resource is to prepare ATGC-derived data sets for a variety of research projects in functional and evolutionary genomics. Unique features of ATGC include: * Reliable identification of orthologs (high degree of similarity between the genomes in the set allow an extensive use of synteny in ortholog identification); * Fine granularity of protein classification (in comparisons of more distant genomes, proteins belonging to families of paralogs are often lumped into a singlegroup; under the ATGC approach, comparison of genomic sequences from highly similar genomes allows one to track each set of orthologs separately); * Relative rarity of changes of any kind (in sequence, genome organization and gene content) allows the use of parsimony-related methods of analysis.

Proper citation: Alignable Tight Genomic Cluster (RRID:SCR_001894) Copy   


  • RRID:SCR_002380

    This resource has 10000+ mentions.

http://www.uniprot.org/

Collection of data of protein sequence and functional information. Resource for protein sequence and annotation data. Consortium for preservation of the UniProt databases: UniProt Knowledgebase (UniProtKB), UniProt Reference Clusters (UniRef), and UniProt Archive (UniParc), UniProt Proteomes. Collaboration between European Bioinformatics Institute (EMBL-EBI), SIB Swiss Institute of Bioinformatics and Protein Information Resource. Swiss-Prot is a curated subset of UniProtKB.

Proper citation: UniProt (RRID:SCR_002380) Copy   


http://dirline.nlm.nih.gov/

THIS RESOURCE IS NO LONGER IN SERVICE, documented July 15, 2016. Database containing location and descriptive information about a wide variety of information resources including organizations, research resources, projects, and databases concerned with health and biomedicine. This information may not be readily available in bibliographic databases. Each record may contain information on the publications, holdings, and services provided. These information resources fall into many categories including federal, state, and local government agencies; information and referral centers; professional societies; self-help groups and voluntary associations; academic and research institutions and their programs; information systems and research facilities. Topics include HIV/AIDS, maternal and child health, most diseases and conditions including genetic and other rare diseases, health services research and technology assessment. DIRLINE can be searched using subject words (such as disease or condition) including Medical Subject Headings (MeSH) or for the name or location of a resource. It now offers an A to Z list of over 8,500 organizations.

Proper citation: Directory of Health Organizations Online (RRID:SCR_002331) Copy   


  • RRID:SCR_006079

    This resource has 1+ mentions.

http://nmr.cmbi.ru.nl/NRG-CING/HTML/index.html

NRG-CING presents a complete validation report for all 9,000+ wwPDB NMR entries including remediated experimental data such as chemical shifts from BMRB and restraints from NRG . These CING reports are compiled from internal analyses and those by CCPN, DSSP, PROCHECK-NMR/Aqua, ShiftX, Talos+, Vasco, Wattos, and WHAT_CHECK. The NRG-CING website is a collection of CING reports that has been pre-calculated for all PDB files solved by NMR. (See website for more information on CING.) In case the underlying experimental data is available, these have been cleaned up and made syntactically and semantically correct and homogeneous. For many macromolecular NMR ensembles from the Protein Data Bank (PDB) the experiment-based restraint lists used in the structure calculation are accessible, while other experimental data, mainly chemical shift values, are often available from the BioMagResBank. Assessment of the quality of the structural result is paramount to their usage and a combined, integrated repository of both input data and structural results greatly facilitates such an analysis. In addition, the accuracy and precision of the coordinates in these macromolecular NMR ensembles can be improved by recalculations using the available experimental data and present-day software with improved protocols and force fields. Such efforts, however, generally fail on over half of all deposited structures due to the syntactic and semantic heterogeneity of the data and the wide variety of formats used for their deposition. We have combined the cleaned-up restraints information from the NMR Restraints Grid (NRG) database with available chemical shifts from the BioMagResBank in the weekly updated NRG-CING database. Eleven programs, in addition to CING itself, have been included in the NRG-CING production pipeline to arrive at validation reports that list for each entry the potential inconsistencies between the coordinates and the available restraint and chemical shift data. The longitudinal validation of this data yielded a set of indicators that can be used to judge the quality of every macromolecular structure solved with NMR. The cleaned up NMR experimental datasets and the validation reports are freely available.

Proper citation: NRG-CING (RRID:SCR_006079) Copy   


http://www.wwpdb.org/

Public global Protein Data Bank archive of macromolecular structural data overseen by organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). This site provides information about services provided by individual member organizations and about projects undertaken by wwPDB. Data available via websites of its member organizations.

Proper citation: Worldwide Protein Data Bank (wwPDB) (RRID:SCR_006555) Copy   


  • RRID:SCR_008991

    This resource has 10+ mentions.

http://snyderome.stanford.edu/

Data set generated by personal omics profiling of Dr. Michael Snyder at Stanford University. It combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. The analysis revealed various medical risks, including type II diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions.

Proper citation: iPOP (RRID:SCR_008991) Copy   


  • RRID:SCR_010787

    This resource has 100+ mentions.

http://www.snps3d.org/

A website which assigns molecular functional effects of non-synonymous SNPs based on structure and sequence analysis.

Proper citation: SNPs3D (RRID:SCR_010787) Copy   


  • RRID:SCR_006636

http://ligand-expo.rutgers.edu/

An integrated data resource for finding chemical and structural information about small molecules bound to proteins and nucleic acids within the structure entries of the Protein Data Bank. Tools are provided to search the PDB dictionary for chemical components, to identify structure entries containing particular small molecules, and to download the 3D structures of the small molecule components in the PDB entry. A sketch tool is also provided for building new chemical definitions from reported PDB chemical components.

Proper citation: Ligand Expo (RRID:SCR_006636) Copy   


  • RRID:SCR_006110

https://compbio.dfci.harvard.edu/predictivenetworks//

A flexible, open-source, web-based application and data services framework that enables the integration, navigation, visualization and analysis of gene interaction networks. The primary goal of PN is to allow biomedical researchers to evaluate experimentally derived gene lists in the context of large-scale gene interaction networks. The PN analytical pipeline involves two key steps. The first is the collection of a comprehensive set of known gene interactions derived from a variety of publicly available sources. The second is to use these ''known'' interactions together with gene expression data to infer robust gene networks. The regression-based network inference algorithm creates a graph of gene interactions in which cycles may be present (but no self-loops). Based on information-theoretic techniques, a causal gene interaction network is inferred from both prior knowledge (interactions extracted from biomedical literature and structured biological databases) and gene expression data. A prediction model is fitted for each gene, given its parents, enabling assessment of the predictive ability of the network model.

Proper citation: Predictive Networks (RRID:SCR_006110) Copy   


  • RRID:SCR_009626

    This resource has 10+ mentions.

http://itools.loni.usc.edu/

An infrastructure for managing of diverse computational biology resources - data, software tools and web-services. The iTools design, implementation and meta-data content reflect the broad NCBC needs and expertise (www.NCBCs.org).

Proper citation: iTools (RRID:SCR_009626) Copy   


  • RRID:SCR_001204

http://ccb.jhu.edu/software/sim4cc/

Software tool as cross species spliced alignment program.Heuristic sequence alignment tool for comparing cDNA sequence with genomic sequence containing homolog of gene in another species.

Proper citation: sim4cc (RRID:SCR_001204) Copy   


http://www.findmice.org/index.jsp

Database of mouse strains and stocks available worldwide, that will assist international research community in finding mouse resources they need, including inbred, mutant, and genetically engineered mice. IMSR is multi institutional international collaboration supporting use of mouse as model system for studying human biology and disease. IMSR began with initial collaboration between Mouse Genome Informatics (MGI) group at Jackson Laboratory and Medical Research Council Mammalian Genetics Unit at Harwell. Additional institutions and collaborators are now contributing mouse resource information to IMSR. Data content found in IMSR is as it was supplied by data provider sites. You are encouraged to participate in making this database as complete as possible for all worldwide mouse strain resources. If you or your institution hold mice, cryopreserved gametes or embryos, or ES cell lines that you distribute to other researchers, contributing information about them to IMSR catalog will make them more widely known.

Proper citation: International Mouse Strain Resource (RRID:SCR_001526) Copy   


  • RRID:SCR_001480

    This resource has 10+ mentions.

http://globin.cse.psu.edu/

Data and tools for studying the function of DNA sequences, with an emphasis on those involved in the production of hemoglobin. It includes information about naturally-occurring human hemoglobin mutations and their effects, experimental data related to the regulation of the beta-like globin gene cluster, and software tools for comparing sequences with one another to discover regions that are likely to play significant roles.

Proper citation: Globin Gene Server (RRID:SCR_001480) Copy   


  • RRID:SCR_016982

https://www.ccpn.ac.uk/v2-software/software/extras/datamodelfolder

Model to cover data for macromolecular NMR spectroscopy from the initial experimental data to the final validation. Used for the large scale data deposition, data mining and program interoperability. Enables movement from one software package to another without difficulties with data conversion or loss of information. Works with CcpNmr Analysis software for analysis and interactive display, CcpNmr FormatConverter for allowing transfer of data from programs used in NMR to and from the Data Model, and the CLOUDS software for automated structure calculation and assignment. Used within the CCPN software suite for NMR spectroscopy and at the BioMagResBank for converting existing deposited restraint lists to a standard IUPAC nomenclature.

Proper citation: CCPN Data Model (RRID:SCR_016982) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X