Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 284 results
Snippet view Table view Download 284 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_002518

    This resource has 100+ mentions.

http://www.nitrc.org/projects/penncnv

A free software tool for Copy Number Variation (CNV) detection from SNP genotyping arrays. Currently it can handle signal intensity data from Illumina and Affymetrix arrays. With appropriate preparation of file format, it can also handle other types of SNP arrays and oligonucleotide arrays. PennCNV implements a hidden Markov model (HMM) that integrates multiple sources of information to infer CNV calls for individual genotyped samples. It differs form segmentation-based algorithm in that it considered SNP allelic ratio distribution as well as other factors, in addition to signal intensity alone. In addition, PennCNV can optionally utilize family information to generate family-based CNV calls by several different algorithms. Furthermore, PennCNV can generate CNV calls given a specific set of candidate CNV regions, through a validation-calling algorithm.

Proper citation: PennCNV (RRID:SCR_002518) Copy   


http://www.patternlabforproteomics.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented July 5, 2018. Gene Ontology Explorer (GOEx) combines data from protein fold changes with GO over-representation statistics to help draw conclusions in proteomic experiments. It is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. A recent hack included in GOEx is to load the sparse matrix index file directly into GOEx, instead of going through the report generation using the AC/T-fold methods. This makes it easy for GOEx to analyze any list of proteins as long as the list follows the index file format (described in manuscript) . Please note that if using this alternative strategy, there will be no protein fold information. Platform: Windows compatible

Proper citation: GOEx - Gene Ontology Explorer (RRID:SCR_005779) Copy   


  • RRID:SCR_017203

    This resource has 1+ mentions.

http://www.open-ephys.org/pulsepal

Open source pulse train generator that allows users to create and trigger software defined trains of voltage pulses with high temporal precision. Generates precisely timed pulse sequences for use in research involving electrophysiology or psychophysics.

Proper citation: Pulse Pal (RRID:SCR_017203) Copy   


http://www.matrics.ucla.edu/index.html

Cognitive deficits -- including impairments in areas such as memory, attention, and executive function -- are a major determinant and predictor of long-term disability in schizophrenia. Unfortunately, available antipsychotic medications are relatively ineffective in improving cognition. Scientific discoveries during the past decade suggest that there may be opportunities for developing medications that will be effective for improving cognition in schizophrenia. The NIMH has identified obstacles that are likely to interfere with the development of pharmacological agents for treating cognition in schizophrenia. These include: (1) a lack of a consensus as to how cognition in schizophrenia should be measured; (2) differing opinions as to the pharmacological approaches that are most promising; (3) challenges in clinical trial design; (4) concerns in the pharmaceutical industry regarding the US Food and Drug Administration''s (FDA) approaches to drug approval for this indication; and (5) issues in developing a research infrastructure that can carry out clinical trials of promising drugs. The MATRICS program will bring together representatives of academia, industry, and government in a consensus process for addressing all of these obstacles. Specific goals of the NIMH MATRICS are: * To catalyze regulatory acceptance of cognition in schizophrenia as a target for drug registration. * To promote development of novel compounds to enhance cognition in schizophrenia. * Leverage economic research power of industry to focus on important but neglected clinical targets. * Identify lead compounds and if deemed feasible, support human proof of concept trials for cognition in schizophrenia.

Proper citation: MATRICS - Measurement And Treatment Research to Improve Cognition in Schizophrenia (RRID:SCR_005644) Copy   


  • RRID:SCR_017464

    This resource has 1+ mentions.

http://autopatcher.org/

Software tool for neuronal recording in intact brain.

Proper citation: Autopatcher (RRID:SCR_017464) Copy   


  • RRID:SCR_017453

https://github.com/vlchaplin/pyRayleighCuda

Python Rayleigh-Sommerfeld integral for acoustics with optional CUDA graphics processing unit (GPU) implementation.

Proper citation: pyRayleighCuda (RRID:SCR_017453) Copy   


http://www.agre.org/index.cfm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. A private repository of clinical and genetic information on families with autism. Genetic and clinical data are obtained from families that have more than one family member diagnosed with an Autism Spectrum Disorder. The biological samples, along with the accompanying clinical data, are made available to AGRE-approved researchers worldwide. As they become available, additional family pedigrees will be posted in the online catalog. Cell lines have been established for the majority of families in this collection and serum/plasma is available on a subset of the subjects until stocks are depleted. The diagnosis of autism has been made using the standard Autism Diagnostic Interview-Revised (ADI-R) algorithm and the Autism Diagnostic Observation Scale (ADOS-G). Detailed birth and medical histories (including basic dysmorphology assessments) on children as well as family and medical information for parents and unaffected siblings, are available for nearly all families. DNA, cell lines, serum, plasma and clinical information are made available to AGRE-approved researchers for analysis.

Proper citation: Autism Genetic Resource Exchange (RRID:SCR_004403) Copy   


  • RRID:SCR_024933

    This resource has 1+ mentions.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT

Software command line tool for automated tractography. Standardised protocols for automated tractography in human and macaque brain.

Proper citation: XTRACT (RRID:SCR_024933) Copy   


http://kimlab.io/brain-map/atlas/

Website to visualize and share anatomical labels. Franklin and Paxinos (FP) based anatomical labels in Allen Common Coordinate Framework (CCF). Cell type specific transgenic mice and MRI atlas were used to adjust and further segment labels. New segmentations were created in dorsal striatum using cortico-striatal connectivity data. Anatomical labels were digitized based on Allen ontology, and web-interface was created for easy visualization. These labels provide resource to isolate and identify mouse brain anatomical structures. Open source data sharing will facilitate further refinement of anatomical labels and integration of data interpretation within single anatomical platform.

Proper citation: Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas (RRID:SCR_019267) Copy   


https://clinicaltrials.gov/ct2/show/NCT00014001

The NIMH-funded Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Study was a nationwide public health-focused clinical trial that compared the effectiveness of older (first available in the 1950s) and newer (available since the 1990s) antipsychotic medications used to treat schizophrenia. These newer medications, known as atypical antipsychotics, cost roughly 10 times as much as the older medications. CATIE is the largest, longest, and most comprehensive independent trial ever done to examine existing therapies for this disease. Schizophrenia is a brain disorder characterized by hallucinations, delusions, and disordered thinking. The course of schizophrenia is variable, but usually is recurrent and chronic, often causing severe disability. Previous studies have shown that taking antipsychotic medications consistently is far more effective than taking no medicine and that the drugs are necessary to manage the disease. The aim of the CATIE study was to determine which medications provide the best treatment for schizophrenia. Additional information may be found by following the links, http://www.nimh.nih.gov/trials/practical/catie/index.shtml, http://www.clinicaltrials.gov/ct/show/NCT00014001?order=1

Proper citation: CATIE - Clinical Antipsychotic Trials in Intervention Effectiveness (RRID:SCR_005615) Copy   


  • RRID:SCR_013152

    This resource has 10+ mentions.

http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula

Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.

Proper citation: TRACULA (RRID:SCR_013152) Copy   


  • RRID:SCR_017012

    This resource has 50+ mentions.

https://github.com/kstreet13/slingshot

Software R package for identifying and characterizing continuous developmental trajectories in single cell data. Cell lineage and pseudotime inference for single-cell transcriptomics.

Proper citation: Slingshot (RRID:SCR_017012) Copy   


  • RRID:SCR_017962

    This resource has 1+ mentions.

https://openwetware.org/wiki/HughesLab:JTK_Cycle

Software R package for Detecting Rhythmic Components in Genome-Scale Data Sets. Non-parametric algorithm to identify rhythmic components in large datasets. Identifies and characterizes cycling variables in large datasets.

Proper citation: JTK_CYCLE (RRID:SCR_017962) Copy   


  • RRID:SCR_002438

    This resource has 100+ mentions.

http://mindboggle.info

Mindboggle (http://mindboggle.info) is open source software for analyzing the shapes of brain structures from human MRI data. The following publication in PLoS Computational Biology documents and evaluates the software: Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of human brains. PLoS Computational Biology 13(3): e1005350. doi:10.1371/journal.pcbi.1005350

Proper citation: Mindboggle (RRID:SCR_002438) Copy   


  • RRID:SCR_002439

    This resource has 10+ mentions.

http://mindboggle.info/data.html

Complete set of free, publicly accessible, downloadable atlases, templates, and individual manually labeled brain image data, the largest collection of publicly available, manually labeled human brains in the world! http://journal.frontiersin.org/article/10.3389/fnins.2012.00171/full

Proper citation: Mindboggle-101 atlases (RRID:SCR_002439) Copy   


http://www.epmba.org/

The Electronic Prenatal Mouse Brain Atlas, EPMBA, at present consists of two sets of annotated images of coronal sections from Gestational Day (GD) 12 heads and GD 16 brains of C57BL/6J mice. Ten micron thick sections were stained with hematoxylin and eosin. Images were prepared at various resolutions for annotations and for high resolution presentation. A subset of sections were annotated and linked to anatomical terms. Additionally, horizontal sections of a GD 12 head were aligned and re-assembled into a 3D volume for digital sectioning in arbitrarily oblique planes. These images were captured using a Nikon E800 stereomicroscope with a 10X objective. The resolution is 1.35 pixels/micrometer. The PC program used to grab the images, Microbrightfield's Neurolucida (version 6), stitched together a mosaic of between 10 and 50 high-res images for each tissue slice, while the user focused the scope for each mosaic tile. Since the nature of optic lenses is to focus on one central point, it was difficult to obtain a uniformly-focused field of vision; as such, small areas of these images are blurred. Images were then transferred to a Macintosh and processed in Adobe Photoshop (version 7). Color levels were adjusted for maximum clarity of the tissue, and areas surrounding the tissue were cleared of artifacts. Each image is approximately 3350 pixels wide by 2650 pixels high. A scale bar with a length of 1350 pixels/mm is visible in the lower right-hand corner of each image. The annotations have been completed for the Atlas of Developing Mouse Brain Gestational (Embryonic) Day 12 (7/5/07) as well as the Atlas of Developing Mouse Brain Embryonic Day 16 (4/26/07). The 3D EPMBA data set has been mounted on a NeuroTerrain Atlas Server (NtAS). (6/27/07).

Proper citation: EPMBA.ORG: Electronic Prenatal Mouse Brain Atlas (RRID:SCR_001882) Copy   


  • RRID:SCR_002569

    This resource has 1+ mentions.

http://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases

3 atlases dedicated for neonates, 1-year-olds, and 2-year-olds. Each atlas comprises a set of 3D images made up of the intensity model, tissue probability maps, and anatomical parcellation map. These atlases are constructed with the help of state-of-the-art infant MR segmentation and groupwise registration methods, on a set of longitudinal images acquired from 95 normal infants (56 males and 39 females) at neonate, 1-year-old, and 2-year-old.

Proper citation: UNC Infant 0-1-2 Atlases (RRID:SCR_002569) Copy   


http://www.neurogems.org/neosim/

Simulation software that includes a parallel discrete event simulation kernel for running models of spiking neurons on a cluster of workstations. Models are specified using NeuroML, and visualized using Java2D. Simulation components are distributed across a parallel machine or network and communicate using timestamped events. The successor NEOSIM2 project under the NeuroGems umbrella at Edinburgh University (http://www.neurogems.org) continues to distribute the software, http://www.neurogems.org/neosim2/ The NEOSIM project includes: * a parallel discrete event simulation kernel for running models of spiking neural networks on clusters of machines. * a modules kit for extending the behavior of neurons and connectivity patterns. * a user interface for building and running simulations. OS: Linux, MS-Windows

Proper citation: Neural Open Simulation (RRID:SCR_002916) Copy   


  • RRID:SCR_014769

    This resource has 10+ mentions.

http://krasnow1.gmu.edu/CENlab/software.html

Stochastic reaction-diffusion simulator in Java which is used for simulating neuronal signaling pathways.

Proper citation: NeuroRD (RRID:SCR_014769) Copy   


  • RRID:SCR_002793

    This resource has 10+ mentions.

http://www.cognitiveatlas.org/

Knowledge base (or ontology) that characterizes the state of current thought in cognitive science that captures knowledge from users with expertise in psychology, cognitive science, and neuroscience. There are two basic kinds of knowledge in the knowledge base. Terms provide definitions and properties for individual concepts and tasks. Assertions describe relations between terms in the same way that a sentence describes relations between parts of speech. The goal is to develop a knowledge base that will support annotation of data in databases, as well as supporting improved discourse in the community. It is open to all interested researchers. A fundamental feature of the knowledge base is the desire and ability to capture not just agreement but also disagreement regarding definitions and assertions. Thus, if you see a definition or assertion that you disagree with, then you can assert and describe your disagreement. The project is led by Russell Poldrack, Professor of Psychology and Neurobiology at the University of Texas at Austin in collaboration with the UCLA Center for Computational Biology (A. Toga, PI) and UCLA Consortium for Neuropsychiatric Phenomics (R. Bilder, PI). Most tasks used in cognitive psychology research are not identical across different laboratories or even within the same laboratory over time. A major advantage of anchoring cognitive ontologies to the measurement level is that the strategy for determining changes in task properties is easier than tracking changes in concept definitions and usage. The process is easier because task parameters are usually (if not always) operationalized objectively, offering a clear basis to judge divergence in methods. The process is also easier because most tasks are based on prior tasks, and thus can more readily be considered descendants in a phylogenetic sense.

Proper citation: Cognitive Atlas (RRID:SCR_002793) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X