Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 9 showing 161 ~ 180 out of 786 results
Snippet view Table view Download 786 Result(s)
Click the to add this resource to a Collection

http://www.picsl.upenn.edu/ANTS/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. Software package designed to enable researchers with advanced tools for brain and image mapping. Many of the ANTS registration tools are diffeomorphic*, but deformation (elastic and BSpline) transformations are available. Unique components of ANTS include multivariate similarity metrics, landmark guidance, the ability to use label images to guide the mapping and both greedy and space-time optimal implementations of diffeomorphisms. The symmetric normalization (SyN) strategy is a part of the ANTS toolkit as is directly manipulated free form deformation (DMFFD). *Diffeomorphism: a differentiable map with differentiable inverse. In general, these maps are generated by integrating a time-dependent velocity field. ANTS Applications: * Gray matter morphometry based on the jacobian and/or cortical thickness. * Group and single-subject optimal templates. * Multivariate DT + T1 brain templates and group studies. * Longitudinal brain mapping -- special similarity metric options. * Neonatal and pediatric brain segmentation. * Pediatric brain mapping. * T1 brain mapping guided by tractography and connectivity. * Diffusion tensor registration based on scalar or connectivity data. * Brain mapping in the presence of lesions. * Lung and pulmonary tree registration. * User-guided hippocampus labeling, also of sub-fields. * Group studies and statistical analysis of cortical thickness, white matter volume, diffusion tensor-derived metrics such as fractional anisotropy and mean diffusion., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: ANTS - Advanced Normalization ToolS (RRID:SCR_004757) Copy   


http://brainvis.wustl.edu/wiki/index.php/Caret:About

Software package to visualize and analyze structural and functional characteristics of cerebral and cerebellar cortex in humans, nonhuman primates, and rodents. Runs on Apple (Mac OSX), Linux, and Microsoft Windows operating systems.

Proper citation: Computerized Anatomical Reconstruction and Editing Toolkit (RRID:SCR_006260) Copy   


  • RRID:SCR_006139

    This resource has 1+ mentions.

http://cibsr.stanford.edu/tools/

A multiplatform, highly modular image processing and visualization application which is under development by the Center for Interdisciplinary Brain Sciences Research. The goal of this project is provide a framework application for neuroimaging which facilitates the interchange of software tools developed by researchers. BrainImageJava can: * Delineate ROIs in slices along X, Y, or Z axes, with 3D feedback in the other axes. * Create and display triangular mesh surfaces from MRI volumes. * Draw Surfaces-of-Interest (SOIs) in 3D, and edit them in a planar display. * Set Talairach grid on a volume, export an AC/PC stack, and measure the values within each grid unit. This 3D image processing and analysis program for the Apple Macintosh PowerPC is based on the public domain application, NIH Image. It includes interactive procedures for 3D MRI quantification including semi-automated procedures for removing non-brain tissues from images, fuzzy segmentation of tissue compartments, global or local parcellation (based on the Talairach atlas), region-growing, etc. The last version of the software included multiplatform capability, volume visualization and advanced image analysis tools.

Proper citation: BrainImage Software (RRID:SCR_006139) Copy   


  • RRID:SCR_006204

    This resource has 1+ mentions.

http://neuro.imm.dtu.dk/software/brede/

A package for neuroinformatics and neuroimaging analysis mostly programmed in Matlab with a few additional programs in Python and Perl. It allows coordinate-based meta-analysis and visualization, neuroimaging analysis of voxel or regional data - not the original data but rather the summary images (e.g., statistical parametric images) and location data in stereotactic space. Among the algorithms implemented are kernel density estimation (for coordinate-based meta-analysis), independent component analysis, non-negative matrix factorization, k-means clustering, singular value decomposition, partial correlation analysis with permutation testing and partial canonical correlation analysis. Visualization of coordinate, surfaces and volumes are possible in 2D and 3D. Generation of HTML for results are possible and algorithms can be accessed from the command line or via a flexible graphical interface. With the Brede Toolbox comes the Brede Database with a small coordinate database from published neuroimaging studies, and ontologies for, e.g., brain function and brain regions.

Proper citation: Brede Toolbox (RRID:SCR_006204) Copy   


  • RRID:SCR_006797

https://itunes.apple.com/gb/app/neuropub-visualizer/id405721542?mt=8

A NIfTI visualizer for statistical brain images (fMRI, VBM, etc) the iPad. The visualizer displays these images as overlay on the MNI standard brain. You can use it to store all your statistical images from your fMRI / VBM / TBSS studies and visualise them in 2D and 3D. Use NeuroPub as a library for your statistical images. It's the perfect app to bring to meetings, conferences, etc, and show your latest results.

Proper citation: NeuroPub Visualizer (RRID:SCR_006797) Copy   


https://fitbir.nih.gov/

Platform for Traumatic Brain Injury relevant data. System was developed to share data across entire TBI research field and to facilitate collaboration between laboratories and interconnectivity between informatics platforms. FITBIR implements interagency Common Data Elements for TBI research and provides tools and resources to extend data dictionary. Established submission strategy to ensure high quality and to provide maximum benefit to investigators. Qualified researchers can request access to data stored in FITBIR and/or data stored at federated repositories.

Proper citation: Federal Interagency Traumatic Brain Injury Research Informatics System (RRID:SCR_006856) Copy   


  • RRID:SCR_006934

    This resource has 10+ mentions.

http://scalablebrainatlas.incf.org/

A web-based, interactive brain atlas viewer, containing a growing number of atlas templates for various species, including mouse, macaque and human. Standard features include fast brain region lookup, point and click to select a region and view its full 3D extent, mark a stereotaxic coordinate and view all regions in a hierarchy. Built-in extensions are the CoCoMac plugin, which provides a spatial display of Macaque connectivity, and a service to transform stereotaxic coordinates to and from the INCF Waxholm space for the mouse. Three dimensional renderings of brain regions are available through a Matlab interface (local installation of Matlab required). The SBA is designed to be customizable. External users can create plugins, hosted on their own servers, to interactively attach images or data to spatial atlas locations. This fully web-based display engine for brain atlases and topologies allows client websites to show brain region related data in a 3D interactive context. Currently available atlases are: * Macaque: The Paxinos Rhesus Monkey atlas (2000) * Macaque: Various templates available through Caret, registered to F99 space: Felleman and Van Essen (1991), Lewis and Van Essen (2000), Regional Map from K��tter and Wanke (2005), Paxinos Rhesus Monkey (2000) * Macaque: The NeuroMaps Macaque atlas (2008) * Mouse: The INCF Waxholm Space for the mouse (2011). Previous versions available. * Mouse: The Allen Mouse Brain volumetric atlas (ABA07) * Human: The LPBA40 parcellation, registered to SRI24 space A variety of services are being developed around the templates contained in the Scalable Brain Atlas. For example, you can include thumbnails of brain regions in your own webpage. Other applications include: * Analyze atlas templates in Matlab * List all regions belonging to the given template * List of supported atlas templates * Find region by coordinate * Color-coded PNG (bitmap) or SVG (vector) image of a brain atlas slice * Region thumbnail in 2D (slice) or 3D (stack of slices) The Scalable Brain Atlas is created by Rembrandt Bakker and Gleb Bezgin, under supervision of Rolf K��tter in the NeuroPhysiology and -Informatics group of the Donders Institute, Radboud UMC Nijmegen.

Proper citation: Scalable Brain Atlas (RRID:SCR_006934) Copy   


http://bric.unc.edu/ideagroup/free-softwares/ABSORB/

This software package implements an algorithm for effective groupwise registration. The required input is a set of 3D MR intensity images (in Analyze format with paired .hdr and .img files) with a text file (.txt) listing all header file (.hdr) names. The output is the set of registered images together with the corresponding dense deformation fields. This software has been tested on Windows XP (32-bit) and Linux (64-bit, kernel version 2.6.18-194.el5). The images should be pre-processed before applying ABSORB: * All brain MR images used as inputs to ABSORB should be in the same situation (e.g., skull-stripped or not, cerebellum removed or not, etc.). * The input images should be in Analyze format with paired header and image files. This software was developed in IDEA group in UNC-Chapel Hill.

Proper citation: ABSORB: Atlas Building by Self-Organized Registration and Bundling (RRID:SCR_007018) Copy   


http://www.cns.atr.jp/dni/en/downloads/tools-for-brain-behavior-data-sharing/

This is MATLAB library to create Neuroshare data format. You can convert your own data into Neuroshare format file.

Proper citation: Matlab Neuroshare Library (RRID:SCR_006957) Copy   


http://www.angiocalc.com/

Providing quality resources for the management of cerebral aneurysms and features an online calculator that calculates cerebral aneurysm volume and percent packing volume after coil embolization. The site also host an imaging Library with neuroanatomy and neurovascular images.

Proper citation: AngioCalc Cerebral Aneurysm Calculator (RRID:SCR_012805) Copy   


http://umcd.humanconnectomeproject.org

Web-based repository and analysis site for connectivity matrices that have been derived from neuroimaging data including different imaging modalities, subject groups, and studies. Users can analyze connectivity matrices that have been shared publicly and upload their own matrices to share or analyze privately.

Proper citation: USC Multimodal Connectivity Database (RRID:SCR_012809) Copy   


  • RRID:SCR_013141

    This resource has 10+ mentions.

http://nipy.org

Community site to make brain imaging research easier that aims to build software that is clearly written, clearly explained, a good fit for the underlying ideas, and a natural home for collaboration.

Proper citation: Neuroimaging in Python (RRID:SCR_013141) Copy   


  • RRID:SCR_013103

http://sourceforge.net/projects/meanmachine/

This software can be used to analyze EEG data either using a graphical interface (GUI) or using Matlab scripts, which make use of the functions provided by the MeanMachine. As compared to other libraries, MeanMachine can handle even very large data sets like, for example, 256 channels recorded at 2KHz.

Proper citation: Mean Machine (RRID:SCR_013103) Copy   


  • RRID:SCR_013108

http://sourceforge.net/projects/liversegm/

A set of tools for the processing of liver images. These tools consist of a level set based variational approach that incorporates shape priors and appearance models. It uses ITK-SNAP 1.4 as interface. The tools are capable of automatic liver segmentation and semi-automatic injury segmentation.

Proper citation: LiverSegm (RRID:SCR_013108) Copy   


http://www.nitrc.org/projects/mixge/

MATLAB Toolbox which provides a mixed effect model for gene-environment interaction (MixGE) on neuroimaging phenotypes, such as structural volumes and tensor-based morphometry (TBM). This model incorporates both fixed and random effects of genetic-set and environment interaction in order to investigate homogeneous and heterogeneous contributions of sets of genetic variants and their interactions with environmental risks to phenotypes.

Proper citation: Mixed Effect Model of Genetic-Set and Environment Interaction (RRID:SCR_015514) Copy   


  • RRID:SCR_008737

    This resource has 10+ mentions.

http://www.textpresso.org/

An information extracting and processing package for biological literature that can be used online or installed locally via a downloadable software package, http://www.textpresso.org/downloads.html Textpresso's two major elements are (1) access to full text, so that entire articles can be searched, and (2) introduction of categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or describe one (e.g., methods, etc). A search engine enables the user to search for one or a combination of these categories and/or keywords within an entire literature. The Textpresso project serves the biological and biomedical research community by providing: * Full text literature searches of model organism research and subject-specific articles at individual sites. Major elements of these search engines are (1) access to full text, so that the entire content of articles can be searched, and (2) search capabilities using categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or identify one (e.g., cell, gene, allele, etc). The search engines are flexible, enabling users to query the entire literature using keywords, one or more categories or a combination of keywords and categories. * Text classification and mining of biomedical literature for database curation. They help database curators to identify and extract biological entities and facts from the full text of research articles. Examples of entity identification and extraction include new allele and gene names and human disease gene orthologs; examples of fact identification and extraction include sentence retrieval for curating gene-gene regulation, Gene Ontology (GO) cellular components and GO molecular function annotations. In addition they classify papers according to curation needs. They employ a variety of methods such as hidden Markov models, support vector machines, conditional random fields and pattern matches. Our collaborators include WormBase, FlyBase, SGD, TAIR, dictyBase and the Neuroscience Information Framework. They are looking forward to collaborating with more model organism databases and projects. * Linking biological entities in PDF and online journal articles to online databases. They have established a journal article mark-up pipeline that links select content of Genetics journal articles to model organism databases such as WormBase and SGD. The entity markup pipeline links over nine classes of objects including genes, proteins, alleles, phenotypes, and anatomical terms to the appropriate page at each database. The first article published with online and PDF-embedded hyperlinks to WormBase appeared in the September 2009 issue of Genetics. As of January 2011, we have processed around 70 articles, to be continued indefinitely. Extension of this pipeline to other journals and model organism databases is planned. Textpresso is useful as a search engine for researchers as well as a curation tool. It was developed as a part of WormBase and is used extensively by C. elegans curators. Textpresso has currently been implemented for 24 different literatures, among them Neuroscience, and can readily be extended to other corpora of text.

Proper citation: Textpresso (RRID:SCR_008737) Copy   


  • RRID:SCR_009456

http://www.nitrc.org/projects/dfbidb/

A suite of tools for efficient management of neuroimaging project data. Specifically, DFBIdb was designed to allow users to quickly perform routine management tasks of sorting, archiving, exploring, exporting and organising raw data. DFBIdb was implemented as a collection of Python scripts that maintain a project-based, centralised database that is based on the XCEDE 2 data model. Project data is imported from a filesystem hierarchy of raw files, which is an often-used convention of imaging devices, using a single script that catalogues meta-data into a modified XCEDE 2 data model. During the import process data are reversibly anonymised, archived and compressed. The import script was designed to support multiple file formats and features an extensible framework that can be adapted to novel file formats. Graphical user interfaces are provided for data exploration. DFBIdb includes facilities to export, convert and organise customisable subsets of project data according to user-specified criteria.

Proper citation: DFBIdb (RRID:SCR_009456) Copy   


http://www.nitrc.org/projects/ccseg/

An open-source C++-based application that allows automatic as well as user-interactive segmentation of the Corpus Callosum. Via a Qt-based graphical user interface, CCSeg also performs semi-automatic segmentation.

Proper citation: CCSeg - Corpus Callosum Segmentation (RRID:SCR_009453) Copy   


http://www.ncigt.org/pages/Research_Projects/ImagingCoreToolbox/Imaging_Toolkit

This software provides algorithms for the reconstruction of raw MR data. In particular, it supports the reconstruction of accelerated data acquisitions where k-space is subsampled and the Fourier domain encoding is complemented by temporal encoding, spatial encoding, or and/or a constrained reconstruction. This library of functions provides a number of reconstruction algorithms that accurately employ advanced MR imaging methods including: UNFOLD; parallel imaging methods such as SENSE and GRAPPA; Homodyne processing of partial-Fourier data, and gradient field inhomogeneity correction (gradwarp); EPI Nyquist Ghost correction and ramp-sampling gridding. The target audience is research groups who may be interested in exploring or employing advanced MR reconstruction techniques, but don't have the necessary expertise in-house. Inquires may be directed to: ncigt-imaging-toolkit -at- bwh.harvard.edu

Proper citation: NCIGT Fast Imaging Library (RRID:SCR_009609) Copy   


  • RRID:SCR_009606

    This resource has 10+ mentions.

http://www.mazesuite.com/

A complete set of tools that enables researchers to perform spatial and navigational behavior experiments within interactive, easy to create, and extendable (e.g., multiple rooms) 3D virtual environments. MazeSuite can be used to design/edit adapted 3D environments where subjects? behavioral performance can be tracked. Maze Suite consists of three main applications; an editing program to create and alter maps (MazeMaker), a visualization/rendering module (MazeWalker), and finally an analysis/mapping tool (MazeAnalyzer). Additionally, MazeSuite has the capabilities of sending signal pulses to physiological recording devices using standard computer ports. MazeSuite, with all 3 applications, is a unique and complete toolset for researchers who want to easily and rapidly deploy interactive 3D environments. Requirements Maze Suite is designed for Windows 7, Windows Vista and Windows XP. 3D rendering quality depends on available graphics card hardware; OpenGL 2.1 or above compliant is recommended. For Windows XP systems, .NET Framework Version 2.0 or above is required and can be downloaded from Microsoft's website.

Proper citation: MazeSuite (RRID:SCR_009606) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X