Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 9 showing 161 ~ 180 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_000262

    This resource has 50+ mentions.

http://deweylab.biostat.wisc.edu/rsem/

Software package for quantifying gene and isoform abundances from single end or paired end RNA Seq data. Accurate transcript quantification from RNA Seq data with or without reference genome. Used for accurate quantification of gene and isoform expression from RNA-Seq data.

Proper citation: RSEM (RRID:SCR_000262) Copy   


http://gst.tennessee.edu/

Graduate School of Genome Science and Technology (GST) is a Life Science graduate program founded on two premises. First, whole-genome sequences and related large-scale datasets have transformed how we perform biological research, a trend that is gathering momentum and is anticipated to frame the way the biology research is accomplished for many years to come. Second, advances in technology, whether at the level of instrumentation, computation, or wet lab reagents, have long been a powerful driving force in biology. The GST program is home to faculty mentors from many walks of life. The virulence factors of pathogenic fungi and the engineering of photosynthetic reaction complexes for bioenergy harvesting are just two examples from the cornucopia of research projects being pursued in GST.

Proper citation: University of Tennessee Genome Science and Technology Graduate Program (RRID:SCR_000038) Copy   


  • RRID:SCR_000464

https://sourceforge.net/projects/popbam/

A tool to perform evolutionary or population-based analyses of next-generation sequencing data. POPBAM takes a BAM file as its input and can compute many widely used evolutionary genetics measures in sliding windows across a genome.

Proper citation: POPBAM (RRID:SCR_000464) Copy   


  • RRID:SCR_000587

http://www.atgc-montpellier.fr/mpscan/

Web tool for index free mapping of multiple short reads on a genome.

Proper citation: MPscan (RRID:SCR_000587) Copy   


  • RRID:SCR_000747

    This resource has 10+ mentions.

http://genboree.org

A software application and database viewing system for genomic research, more specifically formulti-genome comparison and pattern discovery via genome self-comparison. Data are available for a range of species including Human Chr3, Human Chr12, Sea Urchin, Tribolium, and cow. The Genboree Discovery System is the largest software system developed at the bioinformatics laboratory at Baylor in close collaboration with the Human Genome Sequencing Center. Genboree is a turnkey software system for genomic research. Genboree is hosted on the Internet and, as of early 2007, the number of registered users exceeds 600. While it can be configured to support almost any genome-centric discovery process, a number of configurations already exist for specific applications. Current focus is on enabling studies of genome variation, including array CGH studies, PCR-based resequencing, genome resequencing using comparative sequence assembly, genome remapping using paired-end tags and sequences, genome analysis and annotation, multi-genome comparison and pattern discovery via genome self-comparison. Genboree database and visualization settings, tools, and user roles are configurable to fit the needs of specific discovery processes. Private permanent project-specific databases can be accessed in a controlled way by collaborators via the Internet. Project-specific data is integrated with relevant data from public sources such as genome browsers and genomic databases. Data processing tools are integrated using a plug-in model. Genboree is extensible via flexible data-exchange formats to accommodate project specific tools and processing steps. Our Positional Hashing method, implemented in the Pash program, enables extremely fast and accurate sequence comparison and pattern discovery by employing low-level parallelism. Pash enables fast and sensitive detection of orthologous regions across mammalian genomes, and fast anchoring of hundreds of millions of short sequences produced by next-generation sequencing technologies. We are further developing the Pash program and employing it in the context of various discovery pipelines. Our laboratory participates in the pilot stage of the TCGA (The Cancer Genome Atlas) project. We aim to develop comprehensive, rapid, and economical methods for detecting recurrent chromosomal aberrations in cancer using next-generation sequencing technologies. The methods will allow detection of recurrent chromosomal aberrations in hundreds of small (

Proper citation: Genboree Discovery System (RRID:SCR_000747) Copy   


http://fantom.gsc.riken.jp/

International collaborative research project and database of annotated mammalian genome. Used to improve estimates of total number of genes and their alternative transcript isoforms in both human and mouse. Consortium to assign functional annotations to full length cDNAs that were collected during Mouse Encyclopedia Project at RIKEN.

Proper citation: Functional Annotation of the Mammalian Genome (RRID:SCR_000788) Copy   


http://gdm.fmrp.usp.br/

Laboratory portal of the University of Sao Paulo Molecular Genetics and Bioinformatic Laboratory.

Proper citation: USP Molecular Genetics and Bioinformatics Laboratory (RRID:SCR_000605) Copy   


  • RRID:SCR_004480

    This resource has 10+ mentions.

http://nematode.lab.nig.ac.jp/

Expression pattern map of the 100Mb genome of the nematode Caenorhabditis elegans through EST analysis and systematic whole mount in situ hybridization. NEXTDB is the database to integrate all information from their expression pattern project and to make the data available to the scientific community. Information available in the current version is as follows: * Map: Visual expression of the relationships among the cosmids, predicted genes and the cDNA clones. * Image: In situ hybridization images that are arranged by their developmental stages. * Sequence: Tag sequences of the cDNA clones are available. * Homology: Results of BLASTX search are available. Users of the data presented on our web pages should not publish the information without our permission and appropriate acknowledgment. Methods are available for: * In situ hybridization on whole mount embryos of C.elegans * Protocols for large scale in situ hybridization on C.elegans larvae

Proper citation: NEXTDB (RRID:SCR_004480) Copy   


  • RRID:SCR_004415

    This resource has 1+ mentions.

http://stemcellcommons.org/

Open source environment for sharing, processing and analyzing stem cell data bringing together stem cell data sets with tools for curation, dissemination and analysis. Standardization of the analytical approaches will enable researchers to directly compare and integrate their results with experiments and disease models in the Commons. Key features of the Stem Cell Commons * Contains stem cell related experiments * Includes microarray and Next-Generation Sequencing (NGS) data from human, mouse, rat and zebrafish * Data from multiple cell types and disease models * Carefully curated experimental metadata using controlled vocabularies * Export in the Investigation-Study-Assay tabular format (ISA-Tab) that is used by over 30 organizations worldwide * A community oriented resource with public data sets and freely available code in public code repositories such as GitHub Currently in development * Development of Refinery, a novel analysis platform that links Commons data to the Galaxy analytical engine * ChIP-seq analysis pipeline (additional pipelines in development) * Integration of experimental metadata and data files with Galaxy to guide users to choose workflows, parameters, and data sources Stem Cell Commons is based on open source software and is available for download and development.

Proper citation: Stem Cell Commons (RRID:SCR_004415) Copy   


  • RRID:SCR_004786

    This resource has 10+ mentions.

http://www.genedb.org/Homepage/Tbruceibrucei927

Database of the most recent sequence updates and annotations for the T. brucei genome. New annotations are constantly being added to keep up with published manuscripts and feedback from the Trypanosomatid research community. You may search by Protein Length, Molecular Mass, Gene Type, Date, Location, Protein Targeting, Transmembrane Helices, Product, GO, EC, Pfam ID, Curation and Comments, and Dbxrefs. BLAST and other tools are available. T. brucei possesses a two-unit genome, a nuclear genome and a mitochondrial (kinetoplast) genome with a total estimated size of 35Mb/haploid genome. The nuclear genome is split into three classes of chromosomes according to their size on pulsed-field gel electrophoresis, 11 pairs of megabase chromosomes (0.9-5.7 Mb), intermediate (300-900 kb) and minichromosomes (50-100 kb). The T. brucei genome contains a ~0.5Mb segmental duplication affecting chromosomes 4 and 8, which is responsible for some 75 gene duplicates unique to this species. A comparative chromosome map of the duplicons can be accessed here (PubmedID 18036214). Protozoan parasites within the species Trypanosoma brucei are the etiological agent of human sleeping sickness and Nagana in animals. Infections are limited to patches of sub-Saharan Africa where insects vectors of the Glossina genus are endemic. The most recent estimates indicate between 50,000 - 70,000 human cases currently exist, with 17 000 new cases each year (WHO Factsheet, 2006). In collaboration with GeneDB, the EuPathDB genomic sequence data and annotations are regularly deposited on TriTrypDB where they can be integrated with other datasets and queried using customized queries.

Proper citation: GeneDB Tbrucei (RRID:SCR_004786) Copy   


  • RRID:SCR_005186

    This resource has 1+ mentions.

http://seqant.genetics.emory.edu/

A free web service and open source software package that performs rapid, automated annotation of DNA sequence variants (single base mutations, insertions, deletions) discovered with any sequencing platform. Variant sites are characterized with respect to their functional type (Silent, Replacement, 5' UTR, 3' UTR, Intronic, Intergenic), whether they have been previously submitted to dbSNP, and their evolutionary conservation. Annotated variants can be viewed directly on the web browser, downloaded in a tab delimited text file, or directly uploaded in a Browser Extended Data (BED) format to the UCSC genome browser. SeqAnt further identifies all loci harboring two or more coding sequence variants that help investigators identify potential compound heterozygous loci within exome sequencing experiments. In total, SeqAnt resolves a significant bottleneck by allowing an investigator to rapidly prioritize the functional analysis of those variants of interest.

Proper citation: SeqAnt (RRID:SCR_005186) Copy   


  • RRID:SCR_005259

    This resource has 1+ mentions.

http://compbio.cs.brown.edu/projects/gasv/

Software tool combining both paired read and read depth signals into probabilistic model which can analyze multiple alignments of reads. Used to find structural variation in both normal and cancer genomes using data from variety of next-generation sequencing platforms. Used to predict structural variants directly from aligned reads in SAM/BAM format.Combines read depth information along with discordant paired read mappings into single probabilistic model two common signals of structural variation. When multiple alignments of read are given, GASVPro utilizes Markov Chain Monte Carlo procedure to sample over the space of possible alignments.

Proper citation: GASVPro (RRID:SCR_005259) Copy   


  • RRID:SCR_005375

    This resource has 10000+ mentions.

http://bejerano.stanford.edu/prism/public/html/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: PRISM (Stanford database) (RRID:SCR_005375) Copy   


http://www.yandell-lab.org/software/mwas.html

The MAKER Web Annotation Service (MWAS) is an easily configurable web-accessible genome annotation pipeline. It''''s purpose is to allow research groups with small to intermediate amounts of eukaryotic and prokaryotic genome sequence (i.e. BAC clones, small whole genomes, preliminary sequencing data, etc.) to independently annotate and analyze their data and produce output that can be loaded into a genome database. MWAS is build on the stand alone genome annotation pipeline MAKER, and users who wish to annotate larger datasets and whole genomes are free to download MAKER for use on their own systems. MWAS identifies repeats, aligns ESTs and proteins to a genome, produces ab-initio gene predictions and automatically synthesizes these data into gene annotations having evidence-based quality values. MWAS can also automatically train popular gene prediction algorithms for use on new genomes for which pre-existing information is limited. MAKER is a member of the Generic Model Organism Database (GMOD) project and output produced by this site can be directly used with other GMOD tools. Annotations can be directly viewed online by the user via GBrowse, JBrowse, and Apollo, or they can be downloaded for local analysis and integration into a genome database. MWAS also supplies summary statistics on sequence features via the Sequence Ontology tool SOBA. MWAS should prove especially useful for emerging model organism genome projects with minimal bioinformatics expertise and computer resources, since a user can produce final genome annotations without having to install and configure any software locally.

Proper citation: MAKER Web Annotation Service (RRID:SCR_005318) Copy   


  • RRID:SCR_005233

    This resource has 1+ mentions.

http://gds.nih.gov/

NIH established expectations for sharing data obtained through NIH-funded genome-wide association studies (GWAS) with the implementation of the GWAS Policy. Information and resources related to the GWAS Policy can be found on this website.

Proper citation: Genomic Datasharing (RRID:SCR_005233) Copy   


  • RRID:SCR_005507

    This resource has 100+ mentions.

http://microbesonline.org/

MicrobesOnline is designed specifically to facilitate comparative studies on prokaryotic genomes. It is an entry point for operon, regulons, cis-regulatory and network predictions based on comparative analysis of genomes. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

Proper citation: MicrobesOnline (RRID:SCR_005507) Copy   


http://www.cbs.dtu.dk/ws/ws.php?entry=BLASTatlas

The BLASTatlas is a tool that is useful for mapping and visualizing whole genome homology of genes and proteins within a reference strain compared to other strains or species of one or more prokaryotic organisms using either blastp, blastn, tblastn, or blastx. DNA structural information is also included in the atlas to visualize the DNA chromosomal context of regions. Additional information can be added to these plots. The tool is SOAP compliant and WSDL (web services description language) files are available with programming examples available in Perl. The resolution is per-residue or per nucleotide depending on the regime of the blast search: For each annotation in the reference genome, the best hit in the database genome is found using one of the above algorithms. Each matching or mismatching residue/nucleotide of the best hit (based on BLAST score) is then mapped back to the genome sequence, using the coordinates provided in the annotations. By providing an interoperable method to carry out whole genome visualization of homology, this service offers bioinformaticians as well as biologists an easy-to-adopt workflow that can be directly called from the programming language of the user, hence enabling automation of repeated tasks. This tool can be relevant in many pangenomic as well as in metagenomic studies, by giving a quick overview of clusters of insertion sites, genomic islands and overall homology between a reference sequence and a data set.

Proper citation: BLASTatlas - Mapping of whole genome homology (RRID:SCR_005891) Copy   


http://inparanoid.sbc.su.se/cgi-bin/index.cgi

Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.

Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy   


  • RRID:SCR_006783

    This resource has 100+ mentions.

http://www.peptideatlas.org

Multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass spectrometer output files are collected for human, mouse, yeast, and several other organisms, and searched using the latest search engines and protein sequences. All results of sequence and spectral library searching are subsequently processed through the Trans Proteomic Pipeline to derive a probability of correct identification for all results in a uniform manner to insure a high quality database, along with false discovery rates at the whole atlas level. The raw data, search results, and full builds can be downloaded for other uses. All results of sequence searching are processed through PeptideProphet to derive a probability of correct identification for all results in a uniform manner ensuring a high quality database. All peptides are mapped to Ensembl and can be viewed as custom tracks on the Ensembl genome browser. The long term goal of the project is full annotation of eukaryotic genomes through a thorough validation of expressed proteins. The PeptideAtlas provides a method and a framework to accommodate proteome information coming from high-throughput proteomics technologies. The online database administers experimental data in the public domain. You are encouraged to contribute to the database.

Proper citation: PeptideAtlas (RRID:SCR_006783) Copy   


  • RRID:SCR_006773

    This resource has 100+ mentions.

http://www.ensemblgenomes.org/

Database portal offering integrated access to genome-scale data from non-vertebrate species of scientific interest, developed using the Ensembl genome annotation and visualization platform. Ensembl Genomes consists of five sub-portals (for bacteria, protists, fungi, plants and invertebrate metazoa) designed to complement the availability of vertebrate genomes in Ensembl. Many of the databases supporting the portal have been built in close collaboration with the scientific community - essential for maintaining the accuracy and usefulness of the resource. A common set of user interfaces (which include a graphical genome browser, FTP, BLAST search, a query optimized data warehouse, programmatic access, and a Perl API) is provided for all domains. Data types incorporated include annotation of (protein and non-protein coding) genes, cross references to external resources, and high throughput experimental data (e.g. data from large scale studies of gene expression and polymorphism visualized in their genomic context). Additionally, extensive comparative analysis has been performed, both within defined clades and across the wider taxonomy, and sequence alignments and gene trees resulting from this can be accessed through the site.

Proper citation: Ensembl Genomes (RRID:SCR_006773) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X