Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 9 showing 161 ~ 180 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection

http://datahub.io/dataset/kupkb

A collection of omics datasets (mRNA, proteins and miRNA) that have been extracted from PubMed and other related renal databases, all related to kidney physiology and pathology giving KUP biologists the means to ask queries across many resources in order to aggregate knowledge that is necessary for answering biological questions. Some microarray raw datasets have also been downloaded from the Gene Expression Omnibus and analyzed by the open-source software GeneArmada. The Semantic Web technologies, together with the background knowledge from the domain's ontologies, allows both rapid conversion and integration of this knowledge base. SPARQL endpoint http://sparql.kupkb.org/sparql The KUPKB Network Explorer will help you visualize the relationships among molecules stored in the KUPKB. A simple spreadsheet template is available for users to submit data to the KUPKB. It aims to capture a minimal amount of information about the experiment and the observations made.

Proper citation: Kidney and Urinary Pathway Knowledge Base (RRID:SCR_001746) Copy   


  • RRID:SCR_001791

    This resource has 1+ mentions.

http://mousecyc.jax.org/

A manually curated database of both known and predicted metabolic pathways for the laboratory mouse. It has been integrated with genetic and genomic data for the laboratory mouse available from the Mouse Genome Informatics database and with pathway data from other organisms, including human. The database records for 1,060 genes in Mouse Genome Informatics (MGI) are linked directly to 294 pathways with 1,790 compounds and 1,122 enzymatic reactions in MouseCyc. (Aug. 2013) BLAST and other tools are available. The initial focus for the development of MouseCyc is on metabolism and includes such cell level processes as biosynthesis, degradation, energy production, and detoxification. MouseCyc differs from existing pathway databases and software tools because of the extent to which the pathway information in MouseCyc is integrated with the wealth of biological knowledge for the laboratory mouse that is available from the Mouse Genome Informatics (MGI) database.

Proper citation: MouseCyc (RRID:SCR_001791) Copy   


http://ahd.cbi.pku.edu.cn

Database providing a systematic and comprehensive view of morphological phenotypes regulated by plant hormones, as well as regulatory genes participating in numerous plant hormone responses. By integrating the data from mutant studies, transgenic analysis and gene ontology annotation, genes related to the stimulus of eight plant hormones were identified, including abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid and salicylic acid. Another pronounced characteristics of this database is that a phenotype ontology was developed to precisely describe all kinds of morphological processes regulated by plant hormones with standardized vocabularies. To increase the coverage of phytohormone related genes, the database has been updated from AHD to AHD2.0 adding and integrating several pronounced features: (1) added 291 newly published Arabidopsis hormone related genes as well as corrected information (e.g. the arguable ABA receptors) based on the recent 2-year literature; (2) integrated orthologues of sequenced plants in OrthoMCLDB into each gene in the database; (3) integrated predicted miRNA splicing site in each gene in the database; (4) provided genetic relationship of these phytohormone related genes mining from literature, which represents the first effort to construct a relatively comprehensive and complex network of hormone related genes as shown in the home page of our database; (5) In convenience to in-time bioinformatics analysis, they also provided links to a powerful online analysis platform Weblab that they have recently developed, which will allow users to readily perform various sequence analysis with these phytohormone related genes retrieved from AHD2.0; (6) provided links to other protein databases as well as more expression profiling information that would facilitate users for a more systematic analysis related to phytohormone research. Please help to improve the database with your contributions.

Proper citation: Arabidopsis Hormone Database (RRID:SCR_001792) Copy   


https://rgd.mcw.edu/rgdweb/portal/home.jsp?p=4

An integrated resource for information on genes, QTLs and strains associated with diabetes. The portal provides easy acces to data related to both Type 1 and Type 2 Diabetes and Diabetes-related Obesity and Hypertension, as well as information on Diabetic Complications. View the results for all the included diabetes-related disease states or choose a disease category to get a pull-down list of diseases. A single click on a disease will provide a list of related genes, QTLs, and strains as well as a genome wide view of these via the GViewer tool. A link from GViewer to GBrowse shows the genes and QTLs within their genomic context. Additional pages for Phenotypes, Pathways and Biological Processes provide one-click access to data related to diabetes. Tools, Related Links and Rat Strain Models pages link to additional resources of interest to diabetes researchers.

Proper citation: Diabetes Disease Portal (RRID:SCR_001660) Copy   


http://www.webgestalt.org/

Web based gene set analysis toolkit designed for functional genomic, proteomic, and large-scale genetic studies from which large number of gene lists (e.g. differentially expressed gene sets, co-expressed gene sets etc) are continuously generated. WebGestalt incorporates information from different public resources and provides a way for biologists to make sense out of gene lists. This version of WebGestalt supports eight organisms, including human, mouse, rat, worm, fly, yeast, dog, and zebrafish.

Proper citation: WebGestalt: WEB-based GEne SeT AnaLysis Toolkit (RRID:SCR_006786) Copy   


http://phenom.ccbr.utoronto.ca/index.jsp

Database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae, it allows storing, retrieving, visualizing and data mining the quantitative single-cell measurements extracted from micrographs of the temperature-sensitive (ts) mutant cells. PhenoM allows users to rapidly search and retrieve raw images and their quantified morphological data for genes of interest. The database also provides several data-mining tools, including a PhenoBlast module for phenotypic comparison between mutant strains and a Gene Ontology module for functional enrichment analysis of gene sets showing similar morphological alterations. About one-fifth of the genes in the budding yeast are essential for haploid viability and cannot be functionally assessed using standard genetic approaches such as gene deletion. To facilitate genetic analysis of essential genes, we and others have assembled collections of yeast strains expressing temperature-sensitive (ts) alleles of essential genes. To explore the phenotypes caused by essential gene mutation we used a panel of genetically engineered fluorescent markers to explore the morphology of cells in the ts strain collection using high-throughput microscopy. The database contains quantitative measurements of 1,909,914 cells and 78,194 morphological images for 775 temperature-sensitive mutants spanning 491 different essential genes in permissive temperature (26* C) and restrictive temperature (32* C). The morphological images were generated by high-content screening (HCS) technology.

Proper citation: PhenoM - Phenomics of yeast Mutants (RRID:SCR_006970) Copy   


http://www.funnet.info/

Functional Analysis of Transcriptional Networks (FunNet) is designed as an integrative tool for analyzing gene co-expression networks built from microarray expression data. The analytical model implemented in this tool involves two abstraction layers: transcriptional (i.e. gene expression profiles) and functional (i.e. biological themes indicating the roles of the analyzed transcripts). A functional analysis technique, which relies on Gene Ontology and KEGG annotations, is applied to extract a list of relevant biological themes from microarray gene expression data. Afterwards multiple-instance representations are built to relate relevant biological themes to their annotated transcripts. An original non-linear dynamical model is used to quantify the contextual proximity of relevant genomic themes based on their patterns of propagation in the gene co-expression network (i.e. capturing the similarity of the expression profiles of the transcriptional instances of annotating themes). In the end an unsupervised multiple-instance spectral clustering procedure is used to explore the modular architecture of the co-expression network by grouping together biological themes demonstrating a significant relationship in the co-expression network. Functional and transcriptional representations of the co-expression network are provided, together with detailed information on the contextual centrality of related transcripts and genomic themes. FunNet is provided both as a web-based tool and as a standalone R package. The standalone R implementation can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix) and can be downloaded from the FunNet website, or from the worldwide mirrors of CRAN. Both implementations of the FunNet tool are provided freely under the GNU General Public License 2.0. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FunNet - Transcriptional Networks Analysis (RRID:SCR_006968) Copy   


  • RRID:SCR_006998

    This resource has 1+ mentions.

http://goblet.molgen.mpg.de/cgi-bin/goblet2008/goblet.cgi

Tool that performs annotation based on GO and pathway terms for anonymous cDNA or protein sequences. It uses the species independent GO structure and vocabulary together with a series of protein databases collected from various sites, to perform a detailed GO annotation by sequence similarity searches. The sensitivity and the reference protein sets can be selected by the user. GOblet runs automatically and is available as a public service on our web server. GOblet expects query sequences to be in FASTA-Format (with header-lines). Protein and nucleotide sequences are accepted. Total size of all sequences submitted per request should not be larger than 50kb currently. For security reasons: Larger post's will be rejected. Due to limited capacities the queries may be processed in batches depending on the server load. The output of the BLAST job is filtered automatically and the relevant hits are displayed. In addition, the respective GO-terms are shown together with the complete GO-hierarchy of parent terms., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GOblet (RRID:SCR_006998) Copy   


  • RRID:SCR_006989

    This resource has 1000+ mentions.

http://bioinfo.cau.edu.cn/agriGO/

A web-based tool and database for the gene ontology analysis. Its focus is on agricultural species and is user-friendly. The agriGO is designed to provide deep support to agricultural community in the realm of ontology analysis. Compared to other available GO analysis tools, unique advantages and features of agriGO are: # The agriGO especially focuses on agricultural species. It supports 45 species and 292 datatypes currently. And agriGO is designed as an user-friendly web server. # New tools including PAGE (Parametric Analysis of Gene set Enrichment), BLAST4ID (Transfer IDs by BLAST) and SEACOMPARE (Cross comparison of SEA) were developed. The arrival of these tools provides users with possibilities for data mining and systematic result exploration and will allow better data analysis and interpretation. # The exploratory capability and result visualization are enhanced. Results are provided in different formats: HTML tables, tabulated text files, hierarchical tree graphs, and flash bar graphs. # In agriGO, PAGE and SEACOMPARE can be used to carry out cross-comparisons of results derived from different data sets, which is very important when studying multiple groups of experiments, such as in time-course research. Platform: Online tool, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: agriGO (RRID:SCR_006989) Copy   


  • RRID:SCR_006893

    This resource has 10+ mentions.

http://yetfasco.ccbr.utoronto.ca/

Collection of all available transcription factor (TF) specificities for the yeast Saccharomyces cerevisiae in Position Frequency Matrix (PFM) or Position Weight Matrix (PWM) formats. The specificities are evaluated for quality using several metrics. With this website, you can scan sequences with the motifs to find where potential binding sites lie, inspect precomputed genome-wide binding sites, find which TFs have similar motifs to one you have found, and download the collection of motifs. Submissions are welcome.

Proper citation: YeTFaSCo (RRID:SCR_006893) Copy   


  • RRID:SCR_006809

    This resource has 1000+ mentions.

http://biit.cs.ut.ee/gprofiler/

Web server for functional enrichment analysis and conversions of gene lists. Web based tool for functional profiling of gene lists from large scale experiments. Has web interface with powerful visualization. Used for analyzing data from any organism.

Proper citation: g:Profiler (RRID:SCR_006809) Copy   


  • RRID:SCR_007083

    This resource has 100+ mentions.

http://www.obofoundry.org/

A collaboration involving developers of science-based ontologies who are establishing a set of principles for ontology development with the goal of creating a suite of orthogonal interoperable reference ontologies in the biomedical domain. In addition to a listing of OBO ontologies, this site provides a statement of the OBO Foundry principles, discussion fora, technical infrastructure, and other services to facilitate ontology development. Feedback is welcome and participation encouraged.

Proper citation: OBO (RRID:SCR_007083) Copy   


  • RRID:SCR_007837

    This resource has 1+ mentions.

http://organelledb.lsi.umich.edu/

Database of organelle proteins, and subcellular structures / complexes from compiled protein localization data from organisms spanning the eukaryotic kingdom. All data may be downloaded as a tab-delimited text file and new localization data (and localization images, etc) for any organism relevant to the data sets currently contained in Organelle DB is welcomed. The data sets in Organelle DB encompass 138 organisms with emphasis on the major model systems: S. cerevisiae, A. thaliana, D. melanogaster, C. elegans, M. musculus, and human proteins as well. In particular, Organelle DB is a central repository of yeast protein localization data, incorporating results from both previous and current (ongoing) large-scale studies of protein localization in Saccharomyces cerevisiae. In addition, we have manually curated several recent subcellular proteomic studies for incorporation in Organelle DB. In total, Organelle DB is a singular resource consolidating our knowledge of the protein composition of eukaryotic organelles and subcellular structures. When available, we have included terms from the Gene Ontologies: the cellular component, molecular function, and biological process fields are discussed more fully in GO. Additionally, when available, we have included fluorescent micrographs (principally of yeast cells) visualizing the described protein localization. Organelle View is a visualization tool for yeast protein localization. It is a visually engaging way for high school and undergraduate students to learn about genetics or for visually-inclined researchers to explore Organelle DB. By revealing the data through a colorful, dimensional model, we believe that different kinds of information will come to light.

Proper citation: Organelle DB (RRID:SCR_007837) Copy   


  • RRID:SCR_000644

    This resource has 1+ mentions.

Ratings or validation data are available for this resource

http://www.avadis-ngs.com

Software integrated platform that provides analysis, management and visualization tools for next-generation sequencing data. It supports workflows for RNA-Seq, DNA-Seq, ChIP-Seq and small RNA-Seq experiments. Avadis has a built-in Gene Ontology browser to view ontology hierarchies. There are common ontology paths for multiple genes. Platform has collection of data / text mining algorithms, data visualization libraries, workflow/application automation layers, and enterprise data organization functions. These functions are available as libraries that allow developers to rapidly build software prototypes, applications and off-the-shelf products. The collection of algorithms and visualizations in AVADIS grows as new applications using the platform are developed. Currently, the algorithms that AVADIS platform contains range from general purpose statistical mining and modelling algorithms, to text mining algorithms, to very application-specific algorithms for microarray / NGS data analysis, QSAR modelling and biological networks analysis. AVADIS has a collection of powerful mining algorithms like PCA, ANOVA, T-test, clustering, classification and regression methods. The range of visualizations includes most statistical and data modelling related graphing views, and very application-specific visualizations. Some of the statistical views include 2D/3D scatter plots, profile plots, heat maps, histograms and matrix plot; data modelling relevant views include dendrograms, cluster profiles, similarity images and SOM U-matrices. Application-specific views in AVADIS include pathway network views, genome browsers, chemical structure views and pipe-line views. Platform: Windows compatible, Mac OS X compatible, Linux compatible,

Proper citation: Avadis (RRID:SCR_000644) Copy   


http://www.cs.cmu.edu/~jernst/stem/

The Short Time-series Expression Miner (STEM) is a Java program for clustering, comparing, and visualizing short time series gene expression data from microarray experiments (~8 time points or fewer). STEM allows researchers to identify significant temporal expression profiles and the genes associated with these profiles and to compare the behavior of these genes across multiple conditions. STEM is fully integrated with the Gene Ontology (GO) database supporting GO category gene enrichment analyses for sets of genes having the same temporal expression pattern. STEM also supports the ability to easily determine and visualize the behavior of genes belonging to a given GO category or user defined gene set, identifying which temporal expression profiles were enriched for these genes. (Note: While STEM is designed primarily to analyze data from short time course experiments it can be used to analyze data from any small set of experiments which can naturally be ordered sequentially including dose response experiments.) Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Short Time-series Expression Miner (STEM) (RRID:SCR_005016) Copy   


  • RRID:SCR_005675

    This resource has 100+ mentions.

http://www.bumc.bu.edu/cardiovascularproteomics/cpctools/strap/

Software program that automatically annotates a protein list with information that helps in the meaningful interpretation of data from mass spectrometry and other techniques. It takes protein lists as input, in the form of plain text files, protXML files (usually from the TPP), or Dat files from MASCOT search results. From this, it generates protein annotation tables, and a variety of GO charts to aid individual and differential analysis of proteomics data. It downloads information from mainly the Uniprot and EBI QuickGO databases. STRAP requires Windows XP or higher with at least version 3.5 of the Microsoft .NET Framework installed. Platform: Windows compatible

Proper citation: STRAP (RRID:SCR_005675) Copy   


  • RRID:SCR_004426

    This resource has 5000+ mentions.

http://www.uniprot.org/help/uniprotkb

Central repository for collection of functional information on proteins, with accurate and consistent annotation. In addition to capturing core data mandatory for each UniProtKB entry (mainly, the amino acid sequence, protein name or description, taxonomic data and citation information), as much annotation information as possible is added. This includes widely accepted biological ontologies, classifications and cross-references, and experimental and computational data. The UniProt Knowledgebase consists of two sections, UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. UniProtKB/Swiss-Prot (reviewed) is a high quality manually annotated and non-redundant protein sequence database which brings together experimental results, computed features, and scientific conclusions. UniProtKB/TrEMBL (unreviewed) contains protein sequences associated with computationally generated annotation and large-scale functional characterization that await full manual annotation. Users may browse by taxonomy, keyword, gene ontology, enzyme class or pathway.

Proper citation: UniProtKB (RRID:SCR_004426) Copy   


http://www.emouseatlas.org/emage

A database of in situ gene expression data in the developing mouse embryo and an accompanying suite of tools to search and analyze the data. mRNA in situ hybridization, protein immunohistochemistry and transgenic reporter data is included. The data held is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. The conceptual framework which houses the descriptions of the gene expression patterns in EMAGE is the EMAP Mouse Embryo Anatomy Atlas. This consists of a set of 3D virtual embryos at different stages of development, as well as an accompanying ontology of anatomical terms found at each stage. The raw data images can be conventional 2D photographs (of sections or wholemount specimens) or 3D images of wholemount specimens derived from Optical Projection Tomography (OPT) or confocal microscopy. Users may submit data using a Data submission tool or without.

Proper citation: EMAGE Gene Expression Database (RRID:SCR_005391) Copy   


  • RRID:SCR_005744

    This resource has 10+ mentions.

http://www.oeb.harvard.edu/faculty/hartl/old_site/lab/publications/GeneMerge.html

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Web-based and standalone application that returns a wide range of functional genomic data for a given set of study genes and provides rank scores for over-representation of particular functions or categories in the data. It uses the hypergeometric test statistic which returns statistically correct results for samples of all sizes and is the #2 fastest GO tool available (Khatri and Draghici, 2005). GeneMerge can be used with any discrete, locus-based annotation data, including, literature references, genetic interactions, mutant phenotypes as well as traditional Gene Ontology queries. GeneMerge is particularly useful for the analysis of microarray data and other large biological datasets. The big advantage of GeneMerge over other similar programs is that you are not limited to analyzing your data from the perspective of a pre-packaged set of gene-association data. You can download or create gene-association files to analyze your data from an unlimited number of perspectives. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMerge (RRID:SCR_005744) Copy   


http://coot.embl.de/g2d/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A database of candidate genes for mapped inherited human diseases. Candidate priorities are automatically established by a data mining algorithm that extracts putative genes in the chromosomal region where the disease is mapped, and evaluates their possible relation to the disease based on the phenotype of the disorder. Data analysis uses a scoring system developed for the possible functional relations of human genes to genetically inherited diseases that have been mapped onto chromosomal regions without assignment of a particular gene. Methodology can be divided in two parts: the association of genes to phenotypic features, and the identification of candidate genes on a chromosonal region by homology. This is an analysis of relations between phenotypic features and chemical objects, and from chemical objects to protein function terms, based on the whole MEDLINE and RefSeq databases.

Proper citation: Candidate Genes to Inherited Diseases (RRID:SCR_008190) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X