Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Community based, biologist friendly web platform for creating and meta analyzing annotated gene expression data compendia., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: OMiCC (RRID:SCR_016604) Copy
Bradley Voytek''''s blog is where he tries out new ideas. He will often be wrong, but that''''s the point. He is a Neuroscientist studying human cognition, neuroplasticity, and brain computer interfacing. Into really geeky stuff. World zombie neuroscience expert. Also runs brainSCANr.com with his wife, Jessica.
Proper citation: Oscillatory Thoughts (RRID:SCR_005481) Copy
http://bioapps.rit.albany.edu/MITOPRED/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. It predicts nuclear-encoded mitochondrial proteins from all eukaryotic species including plants. Prediction is based on the occurrence patterns of Pfam domains (version 16.0) in different cellular locations, amino acid composition and pI value differences between mitochondrial and non-mitochondrial locations. Additionally, you may download MITOPRED predictions for complete proteomes. Re-calculated predictions are instantly accessible for proteomes of Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila, Homo sapiens, Mus musculus and Arabidopsis species as well as all the eukaryotic sequences in the Swiss-Prot and TrEMBL databases. Queries, at different confidence levels, can be made through four distinct options: (i) entering Swiss-Prot/TrEMBL accession numbers; (ii) uploading a local file with such accession numbers; (iii) entering protein sequences; (iv) uploading a local file containing protein sequences in FASTA format. The Mitopred algorithm works based on the differences in the Pfam domain occurrence patters and amino acid composition differences in different cellular compartments. Location specific Pfam domains have been determined from the entire eukaryotic set of Swissprot database. Similarly, differences in the amino acid composition between mitochondrial and non-mitochondrial sequences were pre-calculated. This information is used to calculate location-specific amino acid weights that are used to calculate amino acid score. Similarly, pI average values of the N-terminal 25 residues in different cellular location were also determined. This knowledge-base is accessed by the program during execution.
Proper citation: mitopred (RRID:SCR_006135) Copy
https://bioinformatics.oxfordjournals.org/content/21/4/557.full.pdf
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. MAP-O-MAT is a web-based server for automated linkage mapping of human polymorphic DNA markers. The server uses publicly available genotype data for over 15,000 markers. It facilitates the verification of order and map distances for custom mapping sets using genotype data from the CEPH database, and from the Marshfield, SNP Consortium and Rutgers linkage maps. The CRI-MAP program is used for likelihood calculations and some mapping algorithms, and physical map positions are provided from the human genome assembly.
Proper citation: MAP-O-MAT (RRID:SCR_008197) Copy
http://igs-server.cnrs-mrs.fr/mgdb/Rickettsia/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Rickettsia are obligate intracellular bacteria living in arthropods. They occasionally cause diseases in humans. To understand their pathogenicity, physiologies and evolutionary mechanisms, RicBase is sequencing different species of Rickettsia. Up to now we have determined the genome sequences of R. conorii, R. felis, R. bellii, R. africae, and R. massiliae. The RicBase aims to organize the genomic data to assist followup studies of Rickettsia. This website contains information on R. conorii and R. prowazekii. A R. conorii and R. prowazekii comparative genome map is also available. Images of genome maps, dendrogram, and sequence alignment allow users to gain a visualization of the diagrams.
Proper citation: Rickettsia Genome Database (RRID:SCR_007102) Copy
http://neurocritic.blogspot.com/
The Neurocritic is a blog deconstructing the most sensationalistic recent findings in Human Brain Imaging, Cognitive Neuroscience, and Psychopharmacology. Born in West Virginia in 1980, The Neurocritic embarked upon a roadtrip across America at the age of thirteen with his mother. She abandoned him when they reached San Francisco and The Neurocritic descended into a spiral of drug abuse and prostitution. At fifteen, The Neurocritic''s psychiatrist encouraged him to start writing as a form of therapy.
Proper citation: Neurocritic (RRID:SCR_006528) Copy
https://www.msu.edu/~brains/index.html
The Brain Biodiversity Bank refers to the repository of images of and information about brain specimens contained in the collections associated with the National Museum of Health and Medicine at the Armed Forces Institute of Pathology in Washington, DC. Atlases and brain sections are available for a variety of mammals, and we are also developing a series of labeled atlases of stained sections for educators, students, and researchers. These collections include, besides the Michigan State University Collection, the Welker Collection from the University of Wisconsin, the Yakovlev-Haleem Collection from Harvard University, the Meyer Collection from the Johns Hopkins University, and the Huber-Crosby and Crosby-Lauer Collections from the University of Michigan. What we are doing currently at Michigan State is a series of demonstration projects for publicizing the contents of the collections and ways in which they can be used. For example, the images from the collection can be used for comparative brain study. We have prepared databases of the contents of the collections for presentation and use on this site, as well as for downloading by users in several formats. We are also developing a series of labeled atlases of stained sections for educators, students, and researchers. This internet site is associated with the Comparative Mammalian Brain Collections site. All of the images are in JPEG or GIF format.
Proper citation: Michigan State University Brain Biodiversity Bank (RRID:SCR_003289) Copy
http://en.wikibooks.org/wiki/Human_Physiology
Human Physiology is a featured book on Wikibooks because it contains substantial content, it is well-formatted, and the Wikibooks community has decided to feature it on the main page or in other places. Please continue to improve it and thanks for the great work so far! A printable and PDF version are available. You can edit its advertisement template. Contents: 1. Homeostasis 2. Cell Physiology 3. Integumentary System 4. The Nervous System 5. Senses 6. The Muscular System 7. Blood Physiology 8. The Cardiovascular System 9. The Immune System 10. The Urinary System 11. The Respiratory System 12. The Gastrointestinal System 13. Nutrition 14. The Endocrine System 15. The Male Reproductive System 16. The Female Reproductive System 17. Pregnancy and Birth 18. Genetics and Inheritance 19. Development: Birth through Death 20. Appendix 1: Answers to Review Questions 21. Authors 22. Further Reading
Proper citation: Human Physiology (RRID:SCR_003525) Copy
http://national_databank.mclean.org
THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. A publicly accessible data repository to provide neuroscience investigators with secure access to cohort collections. The Databank collects and disseminates gene expression data from microarray experiments on brain tissue samples, along with diagnostic results from postmortem studies of neurological and psychiatric disorders. All of the data that is derived from studies of the HBTRC collection is being incorporated into the National Brain Databank. This data is available to the general public, although strict precautions are undertaken to maintain the confidentiality of the brain donors and their family members. The system is designed to incorporate MIAME and MAGE-ML based microarray data sharing standards. Data from various types of studies conducted on brain tissue in the HBTRC collection will be available from studies using different technologies, such as gene expression profiling, quantitative RT-PCR, situ hybridization, and immunocytochemistry and will have the potential for providing powerful insights into the subregional and cellular distribution of genes and/or proteins in different brain regions and eventually in specific subregions and cellular subtypes.
Proper citation: National Brain Databank (RRID:SCR_003606) Copy
http://www.nimh.nih.gov/educational-resources/index.shtml
A portal to educational resources.
Proper citation: NIMH Educational Resources (RRID:SCR_004045) Copy
http://openconnectomeproject.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. Connectomes repository to facilitate the analysis of connectome data by providing a unified front for connectomics research. With a focus on Electron Microscopy (EM) data and various forms of Magnetic Resonance (MR) data, the project aims to make state-of-the-art neuroscience open to anybody with computer access, regardless of knowledge, training, background, etc. Open science means open to view, play, analyze, contribute, anything. Access to high resolution neuroanatomical images that can be used to explore connectomes and programmatic access to this data for human and machine annotation are provided, with a long-term goal of reconstructing the neural circuits comprising an entire brain. This project aims to bring the most state-of-the-art scientific data in the world to the hands of anybody with internet access, so collectively, we can begin to unravel connectomes. Services: * Data Hosting - Their Bruster (brain-cluster) is large enough to store nearly any modern connectome data set. Contact them to make your data available to others for any purpose, including gaining access to state-of-the-art analysis and machine vision pipelines. * Web Viewing - Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID) is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by Google Maps, enhanced to allow the exploration of 3D image data. View the fork of the code or go directly to view the data. * Volume Cutout Service - RESTful API that enables you to select any arbitrary volume of the 3d database (3ddb), and receive a link to download an HDF5 file (for matlab, C, C++, or C#) or a NumPy pickle (for python). Use some other programming language? Just let them know. * Annotation Database - Spatially co-registered volumetric annotations are compactly stored for efficient queries such as: find all synapses, or which neurons synapse onto this one. Create your own annotations or browse others. *Sample Downloads - In addition to being able to select arbitrary downloads from the datasets, they have also collected a few choice volumes of interest. * Volume Viewer - A web and GPU enabled stand-alone app for viewing volumes at arbitrary cutting planes and zoom levels. The code and program can be downloaded. * Machine Vision Pipeline - They are building a machine vision pipeline that pulls volumes from the 3ddb and outputs neural circuits. - a work in progress. As soon as we have a stable version, it will be released. * Mr. Cap - The Magnetic Resonance Connectome Automated Pipeline (Mr. Cap) is built on JIST/MIPAV for high-throughput estimation of connectomes from diffusion and structural imaging data. * Graph Invariant Computation - Upload your graphs or streamlines, and download some invariants. * iPad App - WholeSlide is an iPad app that accesses utilizes our open data and API to serve images on the go.
Proper citation: Open Connectome Project (RRID:SCR_004232) Copy
The Anxiety Disorders Association of America (ADAA) is a national nonprofit organization dedicated to the prevention, treatment, and cure of anxiety disorders and to improving the lives of all people who suffer from them. It is the leader in education, training, and research for anxiety and stress-related disorders. ADAA leads the way, improving the lives of millions of people: * Promotes professional and public awareness of anxiety and related disorders and their impact on people''s lives. * Encourages the advancement of scientific knowledge about causes and treatment of anxiety and related disorders. * Links people who need treatment with the health care professionals who provide it. * Helps people find appropriate treatment and develop self-help skills. * Works to reduce the stigma surrounding anxiety and related disorders. ADAA was founded in 1980 as the Phobia Society of America by a diverse group of clinicians and patients. The term anxiety disorder had not yet been coined. Most anxiety disorders were simply called phobias. That changed as researchers discovered links between panic attacks and abnormal blood flow in the brain, learned that anxiety disorders are associated with pervasive social and health consequences, and discovered and tested various therapies and medications to treat anxiety disorders. ADAA adopted its new name in 1990 to reflect the changing and growing field. Over the years ADAA has launched several national educational campaigns to promote awareness about anxiety disorders and encourage people to seek treatment. ADAA has also funded more than $1.5 million in anxiety disorder research. Today ADAA continues to be the voice for those affected by anxiety and anxiety-related disorders. The organization is frequently cited by the media and also provides information and treatment referrals to tens of thousands each year by phone, e-mail, and through this website.
Proper citation: Anxiety Disorders Association of America (RRID:SCR_006578) Copy
http://www.commondataelements.ninds.nih.gov
The purpose of the NINDS Common Data Elements (CDEs) Project is to standardize the collection of investigational data in order to facilitate comparison of results across studies and more effectively aggregate information into significant metadata results. The goal of the National Institute of Neurological Disorders and Stroke (NINDS) CDE Project specifically is to develop data standards for clinical research within the neurological community. Central to this Project is the creation of common definitions and data sets so that information (data) is consistently captured and recorded across studies. To harmonize data collected from clinical studies, the NINDS Office of Clinical Research is spearheading the effort to develop CDEs in neuroscience. This Web site outlines these data standards and provides accompanying tools to help investigators and research teams collect and record standardized clinical data. The Institute still encourages creativity and uniqueness by allowing investigators to independently identify and add their own critical variables. The CDEs have been identified through review of the documentation of numerous studies funded by NINDS, review of the literature and regulatory requirements, and review of other Institute''s common data efforts. Other data standards such as those of the Clinical Data Interchange Standards Consortium (CDISC), the Clinical Data Acquisition Standards Harmonization (CDASH) Initiative, ClinicalTrials.gov, the NINDS Genetics Repository, and the NIH Roadmap efforts have also been followed to ensure that the NINDS CDEs are comprehensive and as compatible as possible with those standards. CDEs now available: * General (CDEs that cross diseases) Updated Feb. 2011! * Congenital Muscular Dystrophy * Epilepsy (Updated Sept 2011) * Friedreich''s Ataxia * Parkinson''s Disease * Spinal Cord Injury * Stroke * Traumatic Brain Injury CDEs in development: * Amyotrophic Lateral Sclerosis (Public review Sept 15 through Nov 15) * Frontotemporal Dementia * Headache * Huntington''s Disease * Multiple Sclerosis * Neuromuscular Diseases ** Adult and pediatric working groups are being finalized and these groups will focus on: Duchenne Muscular Dystrophy, Facioscapulohumeral Muscular Dystrophy, Myasthenia Gravis, Myotonic Dystrophy, and Spinal Muscular Atrophy The following tools are available through this portal: * CDE Catalog - includes the universe of all CDEs. Users are able to search the full universe to isolate a subset of the CDEs (e.g., all stroke-specific CDEs, all pediatric epilepsy CDEs, etc.) and download details about those CDEs. * CRF Library - (a.k.a., Library of Case Report Form Modules and Guidelines) contains all the CRF Modules that have been created through the NINDS CDE Project as well as various guideline documents. Users are able to search the library to find CRF Modules and Guidelines of interest. * Form Builder - enables users to start the process of assembling a CRF or form by allowing them to choose the CDEs they would like to include on the form. This tool is intended to assist data managers and database developers to create data dictionaries for their study forms.
Proper citation: NINDS Common Data Elements (RRID:SCR_006577) Copy
Repository contains antibody/B cell and T cell epitope information and epitope prediction and analysis tools. Immune epitopes are defined as molecular structures recognized by specific antigen receptors of the immune system, namely antibodies, B cell receptors, and T cell receptors. Immune epitopes from infectious diseases, excluding HIV, and immune-mediated diseases and the accompanying biological information are included.
Proper citation: Immune Epitope Database and Analysis Resource (IEDB) (RRID:SCR_006604) Copy
https://www.fludb.org/brc/home.spg?decorator=influenza
The Influenza Research Database (IRD) serves as a public repository and analysis platform for flu sequence, experiment, surveillance and related data.
Proper citation: Influenza Research Database (IRD) (RRID:SCR_006641) Copy
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
Consortium that puts sequences into a chromosome context and provides the best possible reference assembly for human, mouse, and zebrafish via FTP. Tools to facilitate the curation of genome assemblies based on the sequence overlaps of long, high quality sequences.
Proper citation: Genome Reference Consortium (RRID:SCR_006553) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2019.
Database for those interested in the consequences of Factor VIII genetic variation at the DNA and protein level, it provides access to data on the molecular pathology of haemophilia A. The database presents a review of the structure and function of factor VIII and the molecular genetics of haemophilia A, a real time update of the biostatistics of each parameter in the database, a molecular model of the A1, A2 and A3 domains of the factor VIII protein (based on the crystal structure of caeruloplasmin) and a bulletin board for discussion of issues in the molecular biology of factor VIII. The database is completely updated with easy submission of point mutations, deletions and insertions via e-mail of custom-designed forms. A methods section devoted to mutation detection is available, highlighting issues such as choice of technique and PCR primer sequences. The FVIII structure section now includes a download of a FVIII A domain homology model in Protein Data Bank format and a multiple alignment of the FVIII amino-acid sequences from four species (human, murine, porcine and canine) in addition to the virtual reality simulations, secondary structural data and FVIII animation already available. Finally, to aid navigation across this site, a clickable roadmap of the main features provides easy access to the page desired. Their intention is that continued development and updating of the site shall provide workers in the fields of molecular and structural biology with a one-stop resource site to facilitate FVIII research and education. To submit your mutants to the Haemophilia A Mutation Database email the details. (Refer to Submission Guidelines)
Proper citation: HAMSTeRS - The Haemophilia A Mutation Structure Test and Resource Site (RRID:SCR_006883) Copy
http://neuroade.christakou.org/
At neuroade, a Cognitive Neuroscience Laboratory, we study change in brain and behavior across multiple time-scales. Researchers in the lab combine a variety of methodologies to answer specific questions about typical and atypical behavior and development. We use functional magnetic resonance imaging (fMRI), peripheral psychophysiology (such as skin conductance responses), behavioral testing, genotyping analysis, and computational modeling. Most of our work takes place at the Centre for Integrative Neuroscience and Neurodynamics (CINN), and we all live in the Department of Psychology at the University of Reading. Our research is divided into several distinct yet highly interlinked themes, all converging in their application to understanding psychopathology -- summarised here in no particular order: * Decision-making and the Evaluation of Decision Outcomes * Dimensions of Impulsivity as a Foraging Strategy * Adolescent Development * Computational Modeling Probes of Individual Differences
Proper citation: neuroade (RRID:SCR_006758) Copy
http://www.aids.gov/podcast/podcast-gallery/
Podcasts from AIDS.gov, featuring information from the Federal government about HIV/AIDS prevention, testing, research, treatment, and using new media in response to HIV/AIDS. Categories include: Basic HIV information, New Media, Federal Programs and Policies, HIV/AIDS Awareness Days, and Real Stories.
Proper citation: AIDS.gov Podcast (RRID:SCR_006750) Copy
http://www.genoscope.cns.fr/externe/tetraodon/
The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.
Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.