Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 9 showing 161 ~ 180 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection

http://www.genes2cognition.org/

A neuroscience research program that studies genes, the brain and behavior in an integrated manner, established to elucidate the molecular mechanisms of learning and memory, and shed light on the pathogenesis of disorders of cognition. Central to G2C investigations is the NMDA receptor complex (NRC/MASC), that is found at the synapses in the central nervous system which constitute the functional connections between neurons. Changes in the receptor and associated components are thought to be in a large part responsible for the phenomenon of synaptic plasticity, that may underlie learning and memory. G2C is addressing the function of synapse proteins using large scale approaches combining genomics, proteomics and genetic methods with electrophysiological and behavioral studies. This is incorporated with computational models of the organization of molecular networks at the synapse. These combined approaches provide a powerful and unique opportunity to understand the mechanisms of disease genes in behavior and brain pathology as well as provide fundamental insights into the complexity of the human brain. Additionally, Genes to Cognition makes available its biological resources, including gene-targeting vectors, ES cell lines, antibodies, and transgenic mice, generated for its phenotyping pipeline. The resources are freely-available to interested researchers.

Proper citation: Genes to Cognition: Neuroscience Research Programme (RRID:SCR_007121) Copy   


https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page

A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.

Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy   


http://goldstudy.cimr.cam.ac.uk/

The Genetics of Learning Disability (GOLD) Study is aimed to identify the genes on the X chromosome that contribute to significant intellectual disability and to lead the way towards greater understanding of the mechanisms by which intellectual disability occurs. Ultimately the aim is to improve the services available to affected families. Sponsors: The work was supported by the European Community''s Seventh Framework Programme-the GEN2PHEN Project, the New South Wales Department of Health, the Australian NHMRC, the SMILE foundation, the WCH Foundation, D. Harwood, EU grant QLG3-CT- 2002-01810 (EURO-MRX), US National Institutes of Health (HD26202) to C.E.S., the South Carolina Department of Disabilities and Special Needs (SCDDSN), Action Medical Research and the Wellcome Trust.

Proper citation: Genetics of Learning Disability Study (RRID:SCR_007266) Copy   


  • RRID:SCR_007248

    This resource has 1+ mentions.

http://cardiogenomica.altervista.org/CARDIOGENOMICS/CardioGenomics%20Homepage.htm

The primary goal of the CardioGenomics PGA is to begin to link genes to structure, function, dysfunction and structural abnormalities of the cardiovascular system caused by clinically relevant genetic and environmental stimuli. The principal biological theme to be pursued is how the transcriptional network of the cardiovascular system responds to genetic and environmental stresses to maintain normal function and structure, and how this network is altered in disease. This PGA will generate a high quality, comprehensive data set for the functional genomics of structural and functional adaptation of the cardiovascular system by integrating expression data from animal models and human tissue samples, mutation screening of candidate genes in patients, and DNA polymorphisms in a well characterized general population. Such a data set will serve as a benchmark for future basic, clinical, and pharmacogenomic studies. Training and education are also a key focus of the CardioGenomics PGA. In addition to ongoing journal clubs and seminars, the PGA will be sponsoring symposia at major conferences, and developing workshops related to the areas of focus of this PGA. Information regarding upcoming events can be found in the Events section of this site, and information about training and education opportunities sponsored by CardioGenomics can be found on the Teaching and Education page. The CardioGenomics project came to a close in 2005. This server, cardiogenomics.med.harvard.edu, remains online in order to continue to distribute data that was generated by investigators under the auspices of the CardioGenomics Program for Genomic Applications (PGA). :Sponsors: This resource is supported by The National Heart, Lung and Blood Institute (NHLBI) of the NIH., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: CardioGenomics (RRID:SCR_007248) Copy   


http://zmf.umm.uni-heidelberg.de/apps/zmf/argonaute/single.php

A database is a of mammalian miRNAs and their known or predicted regulatory targets. It provides information on origin of miRNAs, tissue specificity of their expressions and their known or proposed functions, their potential target genes as well as data on miRNA families based on their co-expression and proteins known to be involved in miRNA processing. This database also contains three other navigation tools that can be used to find information relating to miRNA: 1.) Gene Annotations is an information retrieval system for miRNA target genes. It provides comprehensive information from sequence databases and allows to simultaneously search PubMed with all synonyms of a given gene. 2.) miRNA Motif Finder - Argonaute predicts miRNA motifs binding to the gene sequence of the user. The miRNA mature sequences are taken from Agronaute 2 database. miRNA Motif Finder - Custom predicts miRNA motifs binding to the gene sequence, both the gene sequence and miRNA mature sequences provided by the user. 3.) miRNA Statistics provides statistics for the mature miRNA sequences from Argonaute 2 as well as for the miRNA sequences uploaded by the user. It provides statitics on the individual nucleotide as well as pattern of nucleotides apperaing in the sequence.

Proper citation: ARGONAUTE 2 - A database on mammalian microRNAs and their function in gene and pathway regulation (RRID:SCR_007553) Copy   


  • RRID:SCR_005700

    This resource has 10+ mentions.

http://www.molgen.de

The research of the group concentrates on the molecular biology of Gram-positive bacteria, with Bacillus subtilis and Lactococcus lactis as the main model organisms. A number of important (human) pathogens are also investigated: Bacillus cereus, Streptococcus pneumoniae and Enterococcus faecalis. The nature of the research is both fundamental and application-oriented. Transcript- and protein profiling by high-throughput technologies such as DNA microarrays and proteomics tools are being used. The very large data sets generated are analyzed by employing existing and novel bioinformatics tools. Major lines of research are in the field of functional genomics of these organisms, using systems- and synthetic biology approaches.

Proper citation: MolGen (RRID:SCR_005700) Copy   


  • RRID:SCR_006437

    This resource has 5000+ mentions.

http://omim.org

Online catalog of human genes and genetic disorders, for clinical features, phenotypes and genes. Collection of human genes and genetic phenotypes, focusing on relationship between phenotype and genotype. Referenced overviews in OMIM contain information on all known mendelian disorders and variety of related genes. It is updated daily, and entries contain copious links to other genetics resources.

Proper citation: OMIM (RRID:SCR_006437) Copy   


  • RRID:SCR_008033

    This resource has 100+ mentions.

http://www.gene-regulation.com/pub/databases.html

In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.

Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy   


  • RRID:SCR_008154

    This resource has 1+ mentions.

http://ncv.unl.edu/Angelettilab/HPV/Database.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.

Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy   


  • RRID:SCR_008240

    This resource has 1+ mentions.

http://www.repairgenes.org/index.shtml

The aim of the repairGenes site is to be a source of information about DNA repair genes and a useful resource for research on DNA repair. At the moment, the site contains information about a number of DNA repair genes from a set of selected species. The information is organized by organism and by biological process term as defined by the Gene Ontology (GO) project. The coverage of DNA repair genes is not complete, but hopefully it satisfies to demonstrate the concept and generate ideas for future versions of the system. At present, the raw data about DNA repair genes is extracted from the SWISS-PROT database, and categorized using the GO system. SWISS-PROT entries are being annotated by the Gene Ontology Annotation project at EBI. GOA is an ongoing project which will become more complete with time. As more data is released, this will be fed into repairGenes to keep it up-to-date. In future versions, the user will be able to search freely among organisms and categories of repair genes, enabling easy comparisons between species. For a taste of this, please have a look at the overview of repair genes from five major organisms. The amount of information in the system will be increased and the quality will be improved in the future. So will the features of the system.

Proper citation: repairGenes (RRID:SCR_008240) Copy   


  • RRID:SCR_000173

    This resource has 1+ mentions.

http://discover.nci.nih.gov/gominer/GoCommandWebInterface.jsp

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. A web program that organizes lists of genes of interest (for example, under- and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology and automates the analysis of multiple microarrays then integrates the results across all of them in exportable output files and visualizations. High-Throughput GoMiner is an enhancement of GoMiner and is implemented with both a command line interface and a web interface. The program can also: efficiently perform automated batch processing of an arbitrary number of microarrays; produce a human- or computer-readable report that rank-orders the multiple microarray results according to the number of significant GO categories; integrate the multiple microarray results by providing organized, global clustered image map visualizations of the relationships of significant GO categories; provide a fast form of false discovery rate multiple comparisons calculation; and provide annotations and visualizations for relating transcription factor binding sites to genes and GO categories.

Proper citation: High-Throughput GoMiner (RRID:SCR_000173) Copy   


http://www.biomed.org

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. This laboratory facilities contain core research space for monoclonal antibody production, oligonucleotide and peptide synthesis, gene cloning, DNA sequencing, high performance liquid chromatography, tissue culture, positron emission tomography, magnetic resonance spectroscopy and electron microscopy.

Proper citation: The Biomedical Research Foundation - Current Research (RRID:SCR_001564) Copy   


  • RRID:SCR_001735

    This resource has 1+ mentions.

https://www.hgsc.bcm.edu/content/sea-urchin-genome-project

Provides informationa about Genome of California Purple Sea Urchin, one species (Strongylocentrotus purpuratus) of which has been sequenced and annotated by Sea Urchin Genome Sequencing Consortium led by HGSC. Reports sequence and analysis of genome of sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology.

Proper citation: Sea Urchin Genome Project (RRID:SCR_001735) Copy   


http://www.oege.org/

Portal for researchers to locate information relevant to interpretation and follow-up of human genetic epidemiological discoveries, including: a range of population and case and family genetic epidemiological studies, relevant gene and sequence databases, genetic variation databases, trait measurement, resource labs, journals, software, general information, disease genes and genetic diversity.

Proper citation: Online Encyclopedia for Genetic Epidemiology studies (RRID:SCR_001825) Copy   


  • RRID:SCR_016612

https://niaid.github.io/dcas/

Web tool to import raw cDNA sequences, clean sequences, build sequence contigs, perform SignalP analysis, BLAST contigs against numerous BLAST databases, and view the results. Automates large scale cDNA sequence analysis., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: dCAS (RRID:SCR_016612) Copy   


http://www-sequence.stanford.edu/group/candida/

The Stanford Genome Technology Center began a whole genome shotgun sequencing of strain SC5314 of Candida albicans. After reaching its original goal of 1.5X mean coverage of the haploid genome (16Mb) in summer, 1998, Stanford was awarded a supplemental grant to continue sequencing up to a coverage of 10X, performing as much assembly of the sequence as possible, using recognizable genes as nucleation points. Candida albicans is one of the most commonly encountered human pathogens, causing a wide variety of infections ranging from mucosal infections in generally healthy persons to life-threatening systemic infections in individuals with impaired immunity. Oral and esophogeal Candida infections are frequently seen in AIDS patients. Few classes of drugs are effective against these fungal infections, and all of them have limitations with regard to efficacy and side-effects.

Proper citation: Sequencing of Candida Albicans (RRID:SCR_013437) Copy   


http://www.loni.usc.edu/BIRN/Projects/Mouse/

Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.

Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy   


  • RRID:SCR_003591

http://bejerano.stanford.edu/phenotree/

Web server to search for genes involved in given phenotypic difference between mammalian species. The mouse-referenced multiple alignment data files used to perform the forward genomics screen is also available. The webserver implements one strategy of a Forward Genomics approach aiming at matching phenotype to genotype. Forward genomics matches a given pattern of phenotypic differences between species to genomic differences using a genome-wide screen. In the implementation, the divergence of the coding region of genes in mammals is measured. Given an ancestral phenotypic trait that is lost in independent mammalian lineages, it is shown that searching for genes that are more diverged in all trait-loss species can discover genes that are involved in the given phenotype.

Proper citation: Phenotree (RRID:SCR_003591) Copy   


http://cgap.nci.nih.gov/

Project to determine the gene expression profiles of normal, precancer, and cancer cells, whose generated resources are available to the cancer community. Interconnected modules provide access to all CGAP data, bioinformatic analysis tools, and biological resources allowing the user to find in silico answers to biological questions in a fraction of the time it once took in the laboratory. * Genes * Tissues * Pathways * RNAi * Chromosomes * SAGE Genie * Tools

Proper citation: Cancer Genome Anatomy Project (RRID:SCR_003072) Copy   


http://www.le.ac.uk/genetics/genie/vgec/index.html

Hub of evaluated genetics-related teaching resources for teachers and learners in schools and higher education, health professionals and the general public. Suggest or submit a learning resource to the VGEC. Resources include: * simple experiments suitable for all ages * tutorial material * videos on useful techniques * current and relevant links to other evaluated resources The Virtual Genetics Education Centre (VGEC) * Provides information and genetics education resources for higher education, colleges, schools, health professionals and the general public. * Encourages collaboration in the development, evaluation and sharing of genetics education resources * provides links to, and evaluates, sources of information and educational material about genetics. * Explores innovative approaches to teaching and learning in genetics, such as the SWIFT project for example where Second Life is being used to teach some aspects of genetics in a virtual laboratory.

Proper citation: Virtual Genetics Education Centre (RRID:SCR_001958) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X